题目:
Design a stack that supports push, pop, top, and retrieving the minimum element in constant time.
- push(x) -- Push element x onto stack.
- pop() -- Removes the element on top of the stack.
- top() -- Get the top element.
- getMin() -- Retrieve the minimum element in the stack.
提示:
这道题可以通过使用两个stack实现对最小值的记录,每次push进来一个数后,比较该数是否小于当前最小值,如果小于的话就push进保存最小值的stack当中,由于stack“先进后出”的特性,因此后面Push进来的较大的值并不会影响最小值的判断,因为这个较大的值会在之前push进来的较小的值之前pop出去。
另外还可以只使用一个stack,具体的方法就是在stack中存放pair,每个pair的first存放的是值,second存放的是若当前pair在顶部状态时的最小值。
代码:
2stack:
class MinStack { stack<int> s; stack<int> min; public: void push(int x) { if (min.empty() || x <= getMin()) min.push(x); s.push(x); } void pop() { if (s.top() == min.top()) min.pop(); s.pop(); } int top() { return s.top(); } int getMin() { return min.top(); } };
1stack:
class MinStack { typedef pair<int,int> pairt; deque<pairt> stack; public: void push(int x) { if (stack.size()) stack.push_back(make_pair(x, min(x,getMin()))); else stack.push_back(make_pair(x, x)); } void pop() { stack.pop_back(); } int top() { return stack.back().first; } int getMin() { return stack.back().second; } };