zoukankan      html  css  js  c++  java
  • 【LeetCode】309. Best Time to Buy and Sell Stock with Cooldown

    题目:

    Say you have an array for which the ith element is the price of a given stock on day i.

    Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times) with the following restrictions:

    • You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
    • After you sell your stock, you cannot buy stock on next day. (ie, cooldown 1 day)

    Example:

    prices = [1, 2, 3, 0, 2]
    maxProfit = 3
    transactions = [buy, sell, cooldown, buy, sell]

    提示:

    这道题可以用动态规划的思路解决。但是一开始想的时候总是抽象不出状态转移方程来,之后看到了一种用状态机的思路,觉得很清晰,特此拿来分享,先看如下状态转移图:

    这里我们把状态分成了三个,根据每个状态的指向,我们可以得出下面的状态转移方程:

    • s0[i] = max(s0[i-1], s2[i-1])
    • s1[i] = max(s1[i-1], s0[i-1] - price[i])
    • s2[i] = s1[i-1] + price[i]

    这样就清晰了很多。

    代码:

     1 class Solution {
     2 public:
     3     int maxProfit(vector<int>& prices){
     4         if (prices.size() <= 1) return 0;
     5         vector<int> s0(prices.size(), 0);
     6         vector<int> s1(prices.size(), 0);
     7         vector<int> s2(prices.size(), 0);
     8         s1[0] = -prices[0];
     9         s0[0] = 0;
    10         s2[0] = INT_MIN;
    11         for (int i = 1; i < prices.size(); i++) {
    12             s0[i] = max(s0[i - 1], s2[i - 1]);
    13             s1[i] = max(s1[i - 1], s0[i - 1] - prices[i]);
    14             s2[i] = s1[i - 1] + prices[i];
    15         }
    16         return max(s0[prices.size() - 1], s2[prices.size() - 1]);
    17     }
    18 };
  • 相关阅读:
    Python中with用法详解
    SVM-支持向量机总结
    shell 脚本总结
    pycharm git 用法总结
    python小实例——tkinter实战(计算器)
    PyCharm 使用技巧
    博客园博文生成章节目录
    Chrome安装crx文件的插件时出现“程序包无效”
    Matplotlib pyplot中title() xlabel() ylabel()无法显示中文(即显示方框乱码)的解决办法
    Pandas-高级部分及其实验
  • 原文地址:https://www.cnblogs.com/jdneo/p/5228004.html
Copyright © 2011-2022 走看看