zoukankan      html  css  js  c++  java
  • 主流机器学习[xgb, lgb, Keras, LR]

    Preprocess

    # 通用的预处理框架
    
    import pandas as pd
    import numpy as np
    import scipy as sp
    
    # 文件读取
    def read_csv_file(f, logging=False):
        print("==========读取数据=========")
        data =  pd.read_csv(f)
        if logging:
            print(data.head(5))
            print(f, "包含以下列")
            print(data.columns.values)
            print(data.describe())
            print(data.info())
        return data
    

    LR

    # 通用的LogisticRegression框架
    
    import pandas as pd
    import numpy as np
    from scipy import sparse
    from sklearn.preprocessing import OneHotEncoder
    from sklearn.linear_model import LogisticRegression
    from sklearn.preprocessing import StandardScaler
    
    # 1. load data
    df_train = pd.DataFrame()
    df_test  = pd.DataFrame()
    y_train = df_train['label'].values
    
    # 2. process data
    ss = StandardScaler()
    
    
    # 3. feature engineering/encoding
    # 3.1 For Labeled Feature
    enc = OneHotEncoder()
    feats = ["creativeID", "adID", "campaignID"]
    for i, feat in enumerate(feats):
        x_train = enc.fit_transform(df_train[feat].values.reshape(-1, 1))
        x_test = enc.fit_transform(df_test[feat].values.reshape(-1, 1))
        if i == 0:
            X_train, X_test = x_train, x_test
        else:
            X_train, X_test = sparse.hstack((X_train, x_train)), sparse.hstack((X_test, x_test))
    
    # 3.2 For Numerical Feature
    # It must be a 2-D Data for StandardScalar, otherwise reshape(-1, len(feats)) is required
    feats = ["price", "age"]
    x_train = ss.fit_transform(df_train[feats].values)
    x_test  = ss.fit_transform(df_test[feats].values)
    X_train, X_test = sparse.hstack((X_train, x_train)), sparse.hstack((X_test, x_test))
    
    # model training
    lr = LogisticRegression()
    lr.fit(X_train, y_train)
    proba_test = lr.predict_proba(X_test)[:, 1]
    

    LightBGM

    二分类

    import lightgbm as lgb
    import pandas as pd
    import numpy as np
    import pickle
    from sklearn.metrics import roc_auc_score
    from sklearn.model_selection import train_test_split
    
    print("Loading Data ... ")
    
    # 导入数据
    train_x, train_y, test_x = load_data()
    
    # 用sklearn.cross_validation进行训练数据集划分,这里训练集和交叉验证集比例为7:3,可以自己根据需要设置
    X, val_X, y, val_y = train_test_split(
        train_x,
        train_y,
        test_size=0.05,
        random_state=1,
        stratify=train_y ## 这里保证分割后y的比例分布与原数据一致
    )
    
    X_train = X
    y_train = y
    X_test = val_X
    y_test = val_y
    
    
    # create dataset for lightgbm
    lgb_train = lgb.Dataset(X_train, y_train)
    lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)
    # specify your configurations as a dict
    params = {
        'boosting_type': 'gbdt',
        'objective': 'binary',
        'metric': {'binary_logloss', 'auc'},
        'num_leaves': 5,
        'max_depth': 6,
        'min_data_in_leaf': 450,
        'learning_rate': 0.1,
        'feature_fraction': 0.9,
        'bagging_fraction': 0.95,
        'bagging_freq': 5,
        'lambda_l1': 1,  
        'lambda_l2': 0.001,  # 越小l2正则程度越高
        'min_gain_to_split': 0.2,
        'verbose': 5,
        'is_unbalance': True
    }
    
    # train
    print('Start training...')
    gbm = lgb.train(params,
                    lgb_train,
                    num_boost_round=10000,
                    valid_sets=lgb_eval,
                    early_stopping_rounds=500)
    
    print('Start predicting...')
    
    preds = gbm.predict(test_x, num_iteration=gbm.best_iteration)  # 输出的是概率结果
    
    # 导出结果
    threshold = 0.5
    for pred in preds:
        result = 1 if pred > threshold else 0
    
    # 导出特征重要性
    importance = gbm.feature_importance()
    names = gbm.feature_name()
    with open('./feature_importance.txt', 'w+') as file:
        for index, im in enumerate(importance):
            string = names[index] + ', ' + str(im) + '
    '
            file.write(string)
    

    多分类

    import lightgbm as lgb
    import pandas as pd
    import numpy as np
    import pickle
    from sklearn.metrics import roc_auc_score
    from sklearn.model_selection import train_test_split
    
    print("Loading Data ... ")
    
    # 导入数据
    train_x, train_y, test_x = load_data()
    
    # 用sklearn.cross_validation进行训练数据集划分,这里训练集和交叉验证集比例为7:3,可以自己根据需要设置
    X, val_X, y, val_y = train_test_split(
        train_x,
        train_y,
        test_size=0.05,
        random_state=1,
        stratify=train_y ## 这里保证分割后y的比例分布与原数据一致
    )
    
    X_train = X
    y_train = y
    X_test = val_X
    y_test = val_y
    
    
    # create dataset for lightgbm
    lgb_train = lgb.Dataset(X_train, y_train)
    lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)
    # specify your configurations as a dict
    params = {
        'boosting_type': 'gbdt',
        'objective': 'multiclass',
        'num_class': 9,
        'metric': 'multi_error',
        'num_leaves': 300,
        'min_data_in_leaf': 100,
        'learning_rate': 0.01,
        'feature_fraction': 0.8,
        'bagging_fraction': 0.8,
        'bagging_freq': 5,
        'lambda_l1': 0.4,
        'lambda_l2': 0.5,
        'min_gain_to_split': 0.2,
        'verbose': 5,
        'is_unbalance': True
    }
    
    # train
    print('Start training...')
    gbm = lgb.train(params,
                    lgb_train,
                    num_boost_round=10000,
                    valid_sets=lgb_eval,
                    early_stopping_rounds=500)
    
    print('Start predicting...')
    
    preds = gbm.predict(test_x, num_iteration=gbm.best_iteration)  # 输出的是概率结果
    
    # 导出结果
    for pred in preds:
        result = prediction = int(np.argmax(pred))
    
    # 导出特征重要性
    importance = gbm.feature_importance()
    names = gbm.feature_name()
    with open('./feature_importance.txt', 'w+') as file:
        for index, im in enumerate(importance):
            string = names[index] + ', ' + str(im) + '
    '
            file.write(string)
    

    XGB

    二分类

    import numpy as np
    import pandas as pd
    import xgboost as xgb
    import time
    from sklearn.model_selection import StratifiedKFold
    
    
    from sklearn.model_selection import train_test_split
    train_x, train_y, test_x = load_data()
    
    # 构建特征
    
    
    # 用sklearn.cross_validation进行训练数据集划分,这里训练集和交叉验证集比例为7:3,可以自己根据需要设置
    X, val_X, y, val_y = train_test_split(
        train_x,
        train_y,
        test_size=0.01,
        random_state=1,
        stratify=train_y
    )
    
    # xgb矩阵赋值
    xgb_val = xgb.DMatrix(val_X, label=val_y)
    xgb_train = xgb.DMatrix(X, label=y)
    xgb_test = xgb.DMatrix(test_x)
    
    # xgboost模型 #####################
    
    params = {
        'booster': 'gbtree',
        # 'objective': 'multi:softmax',  # 多分类的问题、
        # 'objective': 'multi:softprob',   # 多分类概率
        'objective': 'binary:logistic',
        'eval_metric': 'logloss',
        # 'num_class': 9,  # 类别数,与 multisoftmax 并用
        'gamma': 0.1,  # 用于控制是否后剪枝的参数,越大越保守,一般0.1、0.2这样子。
        'max_depth': 8,  # 构建树的深度,越大越容易过拟合
        'alpha': 0,   # L1正则化系数
        'lambda': 10,  # 控制模型复杂度的权重值的L2正则化项参数,参数越大,模型越不容易过拟合。
        'subsample': 0.7,  # 随机采样训练样本
        'colsample_bytree': 0.5,  # 生成树时进行的列采样
        'min_child_weight': 3,
        # 这个参数默认是 1,是每个叶子里面 h 的和至少是多少,对正负样本不均衡时的 0-1 分类而言
        # ,假设 h 在 0.01 附近,min_child_weight 为 1 意味着叶子节点中最少需要包含 100 个样本。
        # 这个参数非常影响结果,控制叶子节点中二阶导的和的最小值,该参数值越小,越容易 overfitting。
        'silent': 0,  # 设置成1则没有运行信息输出,最好是设置为0.
        'eta': 0.03,  # 如同学习率
        'seed': 1000,
        'nthread': -1,  # cpu 线程数
        'missing': 1,
        'scale_pos_weight': (np.sum(y==0)/np.sum(y==1))  # 用来处理正负样本不均衡的问题,通常取:sum(negative cases) / sum(positive cases)
        # 'eval_metric': 'auc'
    }
    plst = list(params.items())
    num_rounds = 2000  # 迭代次数
    watchlist = [(xgb_train, 'train'), (xgb_val, 'val')]
    
    # 交叉验证
    result = xgb.cv(plst, xgb_train, num_boost_round=200, nfold=4, early_stopping_rounds=200, verbose_eval=True, folds=StratifiedKFold(n_splits=4).split(X, y))
    
    # 训练模型并保存
    # early_stopping_rounds 当设置的迭代次数较大时,early_stopping_rounds 可在一定的迭代次数内准确率没有提升就停止训练
    model = xgb.train(plst, xgb_train, num_rounds, watchlist, early_stopping_rounds=200)
    model.save_model('../data/model/xgb.model')  # 用于存储训练出的模型
    
    preds = model.predict(xgb_test)
    
    # 导出结果
    threshold = 0.5
    for pred in preds:
        result = 1 if pred > threshold else 0
    
    

    Keras

    二分类

    import numpy as np
    import pandas as pd
    import time
    from sklearn.model_selection import train_test_split
    from matplotlib import pyplot as plt
    
    from keras.models import Sequential
    from keras.layers import Dropout
    from keras.layers import Dense, Activation
    from keras.utils.np_utils import to_categorical
    
    # coding=utf-8
    from model.util import load_data as load_data_1
    from model.util_combine_train_test import load_data as load_data_2
    from sklearn.preprocessing import StandardScaler # 用于特征的标准化
    from sklearn.preprocessing import Imputer
    
    print("Loading Data ... ")
    # 导入数据
    train_x, train_y, test_x = load_data()
    
    # 构建特征
    X_train = train_x.values
    X_test  = test_x.values
    y = train_y
    
    imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
    X_train = imp.fit_transform(X_train)
    
    sc = StandardScaler()
    sc.fit(X_train)
    X_train = sc.transform(X_train)
    X_test  = sc.transform(X_test)
    
    
    model = Sequential()
    model.add(Dense(256, input_shape=(X_train.shape[1],)))
    model.add(Activation('tanh'))
    model.add(Dropout(0.3))
    model.add(Dense(512))
    model.add(Activation('relu'))
    model.add(Dropout(0.3))
    model.add(Dense(512))
    model.add(Activation('tanh'))
    model.add(Dropout(0.3))
    model.add(Dense(256))
    model.add(Activation('linear'))
    model.add(Dense(1)) # 这里需要和输出的维度一致
    model.add(Activation('sigmoid'))
    
    # For a multi-class classification problem
    model.compile(loss='binary_crossentropy',
                  optimizer='rmsprop',
                  metrics=['accuracy'])
    
    epochs = 100
    model.fit(X_train, y, epochs=epochs, batch_size=2000, validation_split=0.1, shuffle=True)
    
    # 导出结果
    threshold = 0.5
    for index, case in enumerate(X_test):
        case =np.array([case])
        prediction_prob = model.predict(case)
        prediction = 1 if prediction_prob[0][0] > threshold else 0
    
    

    多分类

    import numpy as np
    import pandas as pd
    import time
    from sklearn.model_selection import train_test_split
    from matplotlib import pyplot as plt
    
    from keras.models import Sequential
    from keras.layers import Dropout
    from keras.layers import Dense, Activation
    from keras.utils.np_utils import to_categorical
    
    # coding=utf-8
    from model.util import load_data as load_data_1
    from model.util_combine_train_test import load_data as load_data_2
    from sklearn.preprocessing import StandardScaler # 用于特征的标准化
    from sklearn.preprocessing import Imputer
    
    print("Loading Data ... ")
    # 导入数据
    train_x, train_y, test_x = load_data()
    
    # 构建特征
    X_train = train_x.values
    X_test  = test_x.values
    y = train_y
    
    # 特征处理
    sc = StandardScaler()
    sc.fit(X_train)
    X_train = sc.transform(X_train)
    X_test  = sc.transform(X_test)
    y = to_categorical(y) ## 这一步很重要,一定要将多类别的标签进行one-hot编码
    
    
    model = Sequential()
    model.add(Dense(256, input_shape=(X_train.shape[1],)))
    model.add(Activation('tanh'))
    model.add(Dropout(0.3))
    model.add(Dense(512))
    model.add(Activation('relu'))
    model.add(Dropout(0.3))
    model.add(Dense(512))
    model.add(Activation('tanh'))
    model.add(Dropout(0.3))
    model.add(Dense(256))
    model.add(Activation('linear'))
    model.add(Dense(9)) # 这里需要和输出的维度一致
    model.add(Activation('softmax'))
    
    # For a multi-class classification problem
    model.compile(optimizer='rmsprop',
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])
    
    epochs = 200
    model.fit(X_train, y, epochs=epochs, batch_size=200, validation_split=0.1, shuffle=True)
    
    # 导出结果
    for index, case in enumerate(X_test):
        case = np.array([case])
        prediction_prob = model.predict(case)
        prediction = np.argmax(prediction_prob)



  • 相关阅读:
    原创: How to build a query based on Definition Updates installed
    About SCCM 2012 UDA(User Device Affinity)
    《失业的程序员》(二十):中国式的二把手
    《失业的程序员》(十九):工作与感情之间的传球 .
    《失业的程序员》(十八):意外的项目之旅 .
    《失业的程序员》(十七):保姆式的服务
    《失业的程序员》(十六):技术和商务的结合
    《失业的程序员》(十五):商业头脑
    《失业的程序员》(十四):兄和弟,矛和盾
    《失业的程序员》(十三):平衡
  • 原文地址:https://www.cnblogs.com/jeasonit/p/10002323.html
Copyright © 2011-2022 走看看