zoukankan      html  css  js  c++  java
  • uva 10047

      Problem A: The Monocycle 

    A monocycle is a cycle that runs on one wheel and the one we will be considering is a bit more special. It has a solid wheel colored with five different colors as shown in the figure:

    The colored segments make equal angles (72o) at the center. A monocyclist rides this cycle on an $M 	imes N$ grid of square tiles. The tiles have such size that moving forward from the center of one tile to that of the next one makes the wheel rotate exactly 72o around its own center. The effect is shown in the above figure. When the wheel is at the center of square 1, the mid­point of the periphery of its blue segment is in touch with the ground. But when the wheel moves forward to the center of the next square (square 2) the mid­point of its white segment touches the ground.

    Some of the squares of the grid are blocked and hence the cyclist cannot move to them. The cyclist starts from some square and tries to move to a target square in minimum amount of time. From any square either he moves forward to the next square or he remains in the same square but turns 90o left or right. Each of these actions requires exactly 1 second to execute. He always starts his ride facing north and with the mid­point of the green segment of his wheel touching the ground. In the target square, too, the green segment must be touching the ground but he does not care about the direction he will be facing.

    Before he starts his ride, please help him find out whether the destination is reachable and if so the minimum amount of time he will require to reach it.

    Input 

    The input may contain multiple test cases.

    The first line of each test case contains two integers M and N ($1 le M$, $N le 25$) giving the dimensions of the grid. Then follows the description of the grid in M lines of N characters each. The character `#' will indicate a blocked square, all other squares are free. The starting location of the cyclist is marked by `S' and the target is marked by `T'. The input terminates with two zeros for M and N.

    Output 

    For each test case in the input first print the test case number on a separate line as shown in the sample output. If the target location can be reached by the cyclist print the minimum amount of time (in seconds) required to reach it exactly in the format shown in the sample output, otherwise, print ``destination not reachable".

    Print a blank line between two successive test cases.

    Sample Input 

    1 3
    S#T
    10 10
    #S.......#
    #..#.##.##
    #.##.##.##
    .#....##.#
    ##.##..#.#
    #..#.##...
    #......##.
    ..##.##...
    #.###...#.
    #.....###T
    0 0
    

    Sample Output 

    Case #1
    destination not reachable
     
    Case #2
    minimum time = 49 sec
    
    #include <iostream>
    #include <stack>
    #include <cstring>
    #include <cstdio>
    #include <string>
    #include <algorithm>
    #include <queue>
    #include <set>
    #include <map>
    #include <fstream>
    #include <stack>
    #include <list>
    #include <sstream>
    #include <cmath>
    
    using namespace std;
    
    #define ms(arr, val) memset(arr, val, sizeof(arr))
    #define mc(dest, src) memcpy(dest, src, sizeof(src))
    #define N 30
    #define INF 0x3fffffff
    #define vint vector<int>
    #define setint set<int>
    #define mint map<int, int>
    #define lint list<int>
    #define sch stack<char>
    #define qch queue<char>
    #define sint stack<int>
    #define qint queue<int>
    
    bool tag[N][N][4][5];//4(0:N;1:E;2:s;3:w);5(0:green;1:black;2red;3:blue;4:white)
    int dir[4][2] = {-1, 0, 0, 1, 1, 0, 0, -1};//(N,E,S,W)
    char grid[N][N];
    int ans;
    
    struct node
    {
        int i, j, d, c, s;//i,j坐标;d方向;c颜色;s步数
    
        node(int i = 0, int j = 0, int d = 0, int c = 0, int s = 0):
            i(i), j(j), d(d), c(c), s(s) {}
        void set(int i, int j, int d, int c, int s)
        {
            this->i = i;
            this->j = j;
            this->d = d;
            this->c = c;
            this->s = s;
        }
    }s;
    
    queue<node> que;
    
    void bfs()
    {
        ms(tag, 0);
        que.push(s);
        tag[s.i][s.j][s.d][s.c] = true;
        int i, j, d, c;
        while (!que.empty())
        {
            node t = que.front();
            que.pop();
            if (grid[t.i][t.j] == 'T' && t.c == 0)
            {
                ans = t.s;
                while (!que.empty())
                {
                    que.pop();
                }
                return;
            }
            d = (t.d + 1) % 4;
            if (!tag[t.i][t.j][d][t.c])//向右转
            {
                que.push(node(t.i, t.j, d, t.c, t.s + 1));
                tag[t.i][t.j][d][t.c] = true;
            }
            d = (t.d + 3) % 4;
            if (!tag[t.i][t.j][d][t.c])//向左转
            {
                que.push(node(t.i, t.j, d, t.c, t.s + 1));
                tag[t.i][t.j][d][t.c] = true;
            }
            i = t.i + dir[t.d][0];
            j = t.j + dir[t.d][1];
            c = (t.c + 1) % 5;
            if (!tag[i][j][t.d][c] && grid[i][j] != '#')//直走
            {
                que.push(node(i, j, t.d, c, t.s + 1));
                tag[i][j][t.d][c] = true;
            }
        }
    }
    
    int main()
    {
        int m, n, i, j, c = 0;
        ms(grid[0], '#');
        while (scanf("%d%d", &m, &n), m && n)
        {
            for (i = 1; i <= m; i++)
            {
                scanf("%s", grid[i] + 1);
                grid[i][0] = grid[i][n + 1] = '#';
            }
            ms(grid[i], '#');
    
            i = j = 1;
            while (true)
            {
                if (grid[i][j] == 'S')
                {
                    s.set(i, j, 0, 0, 0);
                    break;
                }
                j++;
                if (j > n)
                {
                    i++;
                    j = 1;
                }
            }
            ans = 0;
            bfs();
            if (c)
                putchar('
    ');
            printf("Case #%d
    ", ++c);
            if (ans)
                printf("minimum time = %d sec
    ", ans);
            else
                puts("destination not reachable");
        }
        return 0;
    }
  • 相关阅读:
    矩阵特征值和椭圆长短轴的关系?
    Harris角点检测原理详解
    SIFT特征提取分析
    Sift中尺度空间、高斯金字塔、差分金字塔(DOG金字塔)、图像金字塔
    图像处理与计算机视觉的经典书籍
    霍夫变换
    熔断原理与实现Golang版
    如何利用go-zero在Go中快速实现JWT认证
    如何让服务在流量暴增的情况下保持稳定输出
    企业级RPC框架zRPC
  • 原文地址:https://www.cnblogs.com/jecyhw/p/3914694.html
Copyright © 2011-2022 走看看