zoukankan      html  css  js  c++  java
  • matlab 批量提取CNN特征

    无类别,图像混合放置:

    clear
    close all
    
    
    addpath ./matlab
    
    model= './models/bvlc_reference_caffenet/deploy.prototxt';
    weights= './models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel';
    mean = load('./matlab/+caffe/imagenet/ilsvrc_2012_mean.mat');
    net = caffe.Net(model, weights, 'test'); % create net and load weights
    mean_data = mean.mean_data;
      
    net.blobs('data').reshape([227 227 3 1]);
    net.reshape();
    
    rt_img_dir='/ImageNet/ILSVRC2012_img_val/';
    rt_data_dir='ImageNet/Fea/ILSVRC2012_img_val/';
    
    
    
    %disp('Extracting CNN features...');
            
            frames = dir(fullfile(rt_img_dir, '*'));    frames(1)=[];  frames(1)=[];      
            c_num = length(frames);           
            gray_num=0;error_num_CMYK_JPEG=0;
    %        database.path=[];  
            
      for jj = 1:c_num,
                imgpath = fullfile(rt_img_dir, frames(jj).name);
          try                    
          %% prepare the image
            im_data = caffe.io.load_image(imgpath);
            %% subtract mean_data (already in W x H x C, BGR)
            width = 256; height = 256;
            im_data = imresize(im_data, [width, height]); % resize using Matlab's imresize 
            feaSet.iscolor=1;
            if size(im_data,3)==1
             imdata=zeros([size(im_data),3]);
             imdata(:,:,1)=im_data;
             imdata(:,:,2)=im_data;
             imdata(:,:,3)=im_data;
             im_data=imdata;
             feaSet.iscolor=0;
             gray_num=gray_num+1;
            end
             im_data = im_data - (mean_data);   
    
    
            width = 227; height = 227;
            im_data = imresize(im_data, [width, height]); % resize using Matlab's imresize
     
            res = net.forward({im_data});
            fc6_data = net.blobs('fc6').get_data();
            fc7_data = net.blobs('fc7').get_data();
            
                
            feaSet.fc6_data = fc6_data;
            feaSet.fc7_data = fc7_data;
             
            [pdir, fname] = fileparts(frames(jj).name);                        
            fpath = fullfile(rt_data_dir, [fname, '.mat']);
                
            save(fpath, 'feaSet');
            %database.path = [database.path; fpath];
          catch
             str= fullfile(frames(jj).name);
             disp(str);
             error_num_CMYK_JPEG=error_num_CMYK_JPEG+1;
             error_CMYK_JPEG{error_num_CMYK_JPEG}=str;
          end
     end;    
    
        

    有类别,不同类图像按不同文件夹放置

     
    
    clear
    close all
    
    
    addpath ./matlab
    
    model= './models/bvlc_reference_caffenet/deploy.prototxt';
    weights= './models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel';
    mean = load('./matlab/+caffe/imagenet/ilsvrc_2012_mean.mat');
    net = caffe.Net(model, weights, 'test'); % create net and load weights
    mean_data = mean.mean_data;
    %% obtain params in diff layers and show
    %pdata = net.params('conv1',1).get_data();
    %vis_square(pdata,2,0.5);
      
    net.blobs('data').reshape([227 227 3 1]);
    net.reshape();
    
    rt_img_dir='mageNet/ILSVRC2012_img_train/';
    rt_data_dir='ImageNet/Fea/ILSVRC2012_img_train/';
    
     
    disp('Extracting CNN features...');
    subfolders = dir(rt_img_dir);
    
    siftLens = [];
    
    database = [];
    
    database.imnum = 0; % total image number of the database
    database.cname = {}; % name of each class
    database.label = []; % label of each class
    database.path = {}; % contain the pathes for each image of each class
    database.nclass = 0;
    error_num_CMYK_JPEG=0;
    for ii = 1:length(subfolders),
        subname = subfolders(ii).name;
        
        if ~strcmp(subname, '.') & ~strcmp(subname, '..'),
            database.nclass = database.nclass + 1;
            
            database.cname{database.nclass} = subname;
            
            frames = dir(fullfile(rt_img_dir, subname, '*'));
            frames(1)=[];frames(1)=[];
            c_num = length(frames);           
            database.imnum = database.imnum + c_num;
            database.label = [database.label; ones(c_num, 1)*database.nclass];
            
            siftpath = fullfile(rt_data_dir, subname);        
            if ~isdir(siftpath),
                mkdir(siftpath);
            end;
            
            for jj = 1:c_num,
                imgpath = fullfile(rt_img_dir, subname, frames(jj).name);
         try          
                im_data = caffe.io.load_image(imgpath);
            %% subtract mean_data (already in W x H x C, BGR)
            width = 256; height = 256;
            im_data = imresize(im_data, [width, height]); % resize using Matlab's imresize 
            feaSet.iscolor=1;
            if size(im_data,3)==1
             imdata=zeros([size(im_data),3]);
             imdata(:,:,1)=im_data;
             imdata(:,:,2)=im_data;
             imdata(:,:,3)=im_data;
             im_data=imdata;
             feaSet.iscolor=0;
             gray_num=gray_num+1;
            end
            feaSet.label= database.nclass;
            
             im_data = im_data - (mean_data);   
    
    
            width = 227; height = 227;
            im_data = imresize(im_data, [width, height]); % resize using Matlab's imresize
     
            res = net.forward({im_data});
            fc6_data = net.blobs('fc6').get_data();
            fc7_data = net.blobs('fc7').get_data();
         
                
            feaSet.fc6_data = fc6_data;
            feaSet.fc7_data = fc7_data;
             
            [pdir, fname] = fileparts(frames(jj).name);                        
            fpath = fullfile(rt_data_dir, subname,  [fname, '.mat']);
                
            save(fpath, 'feaSet');
          catch
             str= fullfile(subname,frames(jj).name);
             disp(str);
             error_num_CMYK_JPEG=error_num_CMYK_JPEG+1;
             error_CMYK_JPEG{error_num_CMYK_JPEG}=str;
          end       
    
            end;    
        end;
    end;
        
    
    
     
  • 相关阅读:
    Delphi XE5 图解为Android应用制作签名
    Delphi事件的广播 转
    Delphi XE6 Android拨号函数
    Firemonkey里触发home按键被按下的事件
    如何处理App的Application的事件
    SQL SERVER存储过程中使用事务与捕获异常
    关于蓝牙打印机的开发
    图标大全网站
    提高Android和iOS调试编译速度
    百万级数据查询优化(数据库)
  • 原文地址:https://www.cnblogs.com/jeffwilson/p/5122495.html
Copyright © 2011-2022 走看看