zoukankan      html  css  js  c++  java
  • 布隆过滤器总结

    一:布隆过滤器简介:

      Bloom Filter是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合。Bloom Filter的这种高效是有一定代价的:在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误认为属于这个集合(false positive)。因此,Bloom Filter不适合那些“零错误”的应用场合。而在能容忍低错误率的应用场合下,Bloom Filter通过极少的错误换取了存储空间的极大节省。

    二:优势和劣势

    1:优势:

    ①:仅仅保留数据的指纹信息,空间效率极高

    ②:信息安全性极高

    ③:查询效率极高,时间复杂度为O(N)

    2:劣势 :

    ①:存在一定的误判

    ②:删除数据困难

    三:常用API总结:

    引入Google的guava java API包,常用方法有:create(Funnel<? super T> funnel, int expectedInsertions, double fpp); put(T object); mightContain(T object) ; 

    四:使用场景: 

      布隆过滤器在redis集群的上一步,主要是判断数据是否存在于布隆过滤器中,这样减少对redis服务器的压力。布隆过滤器其原理就是把大数据量加载到内存中,判断数据是否存在。大数据量加载到内存中,这样容易导致OOM。一般是在应用启动的时候,进行初始化把数据加载到布隆过滤器中。布隆过滤器所需要占内存公式为:设bit数组大小为m,样本数量为n,失误率为p。由题可知 n = 500万,p = 3%(Google布隆过滤器默认为3%,我们也可以修改),公式为:

    五:与redis服务器集成:

    其中Redission中的Jar封装了该布隆过滤器的方法和API。总结一下:布隆过滤器主要是判断数据是否存在集合(大量的数据)中,主要用途比如垃圾邮件过滤、爬虫爬过的网页等。利用其如果数据不在集合中,则一定不会在集合中。如果数据在集合中,不一定会在集合中,会有一定的误判率。也可以解决缓存穿透的问题(数据库和缓存中数据都不存在的情况)。

     

    郭慕荣博客园
  • 相关阅读:
    DOM
    JavaScript
    自定义特性的简单用法
    项目三--自主开发项目说明
    一维数组进行多位数算数运算-加减乘
    Vs2017发布可在线更新的Winform程序
    C#中使用WCF创建面向网络的服务程序
    datatable转layui表格v2[分页and带模板]【偏实例】
    datatable转layui表格【偏原理】
    MVC下通过jquery的ajax调用webapi
  • 原文地址:https://www.cnblogs.com/jelly12345/p/12079128.html
Copyright © 2011-2022 走看看