一.PG 9.3有以下索引类型
1.b-tree
- 1.1支持前导模糊查询,如
xxx%
或者^'xxx'
- 1.2忽略大小写字符前导模糊查询,如
ILIKE 'XXX%'
或者~*'^xxx'
- 1.3支持常见的条件运算符
< = <= = >= >
2.hash
- 仅支持
=
条件运算符
3.gin
- 支持多列值索引,例如数据类型,全文检索类型
<@
被包含 array[1,2,3] <@ array[2,3,4]@>
包含 array[1,2,3] @> array[2]=
相等 array[1,2,3] = array[1,2,3]&&
相交 array[1,2,3]&& array[2]
4.gist
- 不是单类索引,算是一种索引框架,支持许多不同的索引策略,可以自定义条件运算符
- 支持近邻排序,如取某一个点的10个近邻
select * from places order by localtion <-> point '(101,456)' limit 10;
<<
-- 严格在左侧, 例如circle '((0,0),1)' << circle '((5,0),1)'&<
-- 表示左边的平面体不会扩展到超过右边的平面体的右边. 例如box '((0,0),(1,1))' &< box '((0,0),(2,2))'&>
-- 表示左边的平面体不会扩展到超过右边的平面体的左边. 例如box '((0,0),(3,3))' &> box '((0,0),(2,2))'>>
-- 严格在右<<|
-- 严格在下&<|
-- 不会扩展到超出上面|&>
-- 不会扩展到超出下面|>>
-- 严格在上@>
-- 包含<@
-- 被包含~=
-- 相同&&
-- 相交http://www.postgresql.org/docs/9.3/static/functions-geometry.html
5.sp-gist
- 与gist类似,也是一张索引框架,支持基于磁盘存储的非平衡数据结构,如四叉树、k-d树、radix树
- 支持操作符
<<
>>
~=
<@
<^
在下面,circle'((0,0),1)' <^ circle'((0,5),1)
左边的圆在右边的圆的下边>^
在上面,circle'((0,5),1)' 》^ circle'((0,0),1)
左边的圆在右边的圆的上边
二.使用索引的好处
1.利用索引进行排序减少CPU开销
- 1.1 查询条件就是索引列
postgres=# c db1
You are now connected to database "db1" as user "yzw".
db1=# create table test(id int,info text,crt_time timestamp);
CREATE TABLE
db1=# insert into test select generate_series(1,10000), md5(random()::text),clock_timestamp();
INSERT 0 10000
db1=# create index idx_test_1 on test(id);
CREATE INDEX
db1=# explain analyze select * from test where id<100 order by id;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------
Sort (cost=396.80..405.13 rows=3333 width=44) (actual time=0.106..0.111 rows=99 loops=1)
Sort Key: id
Sort Method: quicksort Memory: 32kB
-> Bitmap Heap Scan on test (cost=66.12..201.78 rows=3333 width=44) (actual time=0.050..0.059 rows=99 loops=1)
Recheck Cond: (id < 100)
Heap Blocks: exact=1
-> Bitmap Index Scan on idx_test_1 (cost=0.00..65.28 rows=3333 width=0) (actual time=0.036..0.036 rows=99 loops=1)
Index Cond: (id < 100)
Planning time: 0.520 ms
Execution time: 0.178 ms
(10 rows)
- 1.2 查询条件不是索引列
db1=# explain analyze select * from test where info='c969799412fed1c8f91eff5e65353a85' order by id;
QUERY PLAN
-------------------------------------------------------------------------------------------------------
Sort (cost=219.01..219.01 rows=1 width=45) (actual time=1.112..1.112 rows=1 loops=1)
Sort Key: id
Sort Method: quicksort Memory: 25kB
-> Seq Scan on test (cost=0.00..219.00 rows=1 width=45) (actual time=0.011..1.104 rows=1 loops=1)
Filter: (info = 'c969799412fed1c8f91eff5e65353a85'::text)
Rows Removed by Filter: 9999
Planning time: 0.081 ms
Execution time: 1.129 ms
(8 rows)
> 为何都有排序的节点Sort Key?
# 关闭enable_seqscan全表扫描后,查询索引列没有了排序节点
db1=# set enable_seqscan=off;
SET
db1=# explain analyze select * from test where id<100 order by id;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------
Index Scan using idx_test_1 on test (cost=0.29..10.04 rows=100 width=45) (actual time=0.005..0.016 rows=99 loops=1)
Index Cond: (id < 100)
Planning time: 0.119 ms
Execution time: 0.034 ms
(4 rows)
enable_seqscan 9.4默认是on,9.3是off?
2.加速带条件的查询,删除,更新
- 2.1 正常开启全表扫描和索引扫描情况下,有索引的列查找走索引
db1=# set enable_seqscan=on;
SET
db1=# explain analyze select * from test where id=1;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------
Index Scan using idx_test_1 on test (cost=0.29..8.30 rows=1 width=45) (actual time=0.014..0.015 rows=1 loops=1)
Index Cond: (id = 1)
Planning time: 0.067 ms
Execution time: 0.032 ms
(4 rows)
- 2.2在没有索引条件下的查询效率,即使有索引列也会走全表扫描
db1=# show enable_indexscan;
enable_indexscan
------------------
on
(1 row)
db1=# show enable_bitmapscan;
enable_bitmapscan
-------------------
on
(1 row)
db1=# set enable_indexscan=off,enable_bitmapscan=off;
db1=# set enable_indexscan=off;set enable_bitmapscan=off;
SET
SET
db1=# show enable_indexscan;show enable_bitmapscan;
enable_indexscan
------------------
off
(1 row)
enable_bitmapscan
-------------------
off
(1 row)
# 关闭索引后,变成全表扫描了
db1=# explain analyze select * from test where id=1;
QUERY PLAN
-------------------------------------------------------------------------------------------------
Seq Scan on test (cost=0.00..219.00 rows=1 width=45) (actual time=0.012..0.943 rows=1 loops=1)
Filter: (id = 1)
Rows Removed by Filter: 9999
Planning time: 0.138 ms
Execution time: 0.971 ms
(5 rows)
- 2.3 加速join操作
db1=# set enable_indexscan=on;set enable_bitmapscan=on;
SET
SET
db1=# insert into test1 select generate_series(1,10000), md5(random()::text),clock_timestamp();
INSERT 0 10000
test1表没有建索引,走全表扫描,test表走id索引,并且出现嵌套循环
db1=# explain analyze select t1.*,t2.* from test t1 join test1 t2 on(t1.id=t2.id and t2.id=1);
QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------
Nested Loop (cost=0.29..227.31 rows=1 width=90) (actual time=0.032..0.896 rows=1 loops=1)
-> Index Scan using idx_test_1 on test t1 (cost=0.29..8.30 rows=1 width=45) (actual time=0.019..0.020 rows=1 loops=1)
Index Cond: (id = 1)
-> Seq Scan on test1 t2 (cost=0.00..219.00 rows=1 width=45) (actual time=0.010..0.873 rows=1 loops=1)
Filter: (id = 1)
Rows Removed by Filter: 9999
Planning time: 0.124 ms
Execution time: 0.927 ms
(8 rows)
给test1表增加索引后,也走索引,test1表的索引数据在内存,因此速度更快
db1=# create index idx_test1_id on test1(id);
CREATE INDEX
db1=# explain analyze select t1.*,t2.* from test t1 join test1 t2 on(t1.id=t2.id and t2.id=1);
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------
Nested Loop (cost=0.57..16.62 rows=1 width=90) (actual time=0.033..0.034 rows=1 loops=1)
-> Index Scan using idx_test_1 on test t1 (cost=0.29..8.30 rows=1 width=45) (actual time=0.011..0.012 rows=1 loops=1)
Index Cond: (id = 1)
-> Index Scan using idx_test1_id on test1 t2 (cost=0.29..8.30 rows=1 width=45) (actual time=0.020..0.020 rows=1 loops=1)
Index Cond: (id = 1)
Planning time: 0.240 ms
Execution time: 0.059 ms
(7 rows)
merge join,两个join的表按照join列做好排序后,再进行join,也能用上索引,通常来说,能够使用merge join的地方,使用hash join更快
db1=# show enable_hashjoin;
enable_hashjoin
-----------------
on
(1 row)
db1=# show enable_mergejoin;
enable_mergejoin
------------------
on
(1 row)
# 关闭hashjoin
set enable_hashjoin=off;
db1=# explain analyze select t1.*,t2.* from test t1 join test1 t2 on t1.id=t2.id;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------------
Merge Join (cost=0.57..884.57 rows=10000 width=90) (actual time=0.020..10.837 rows=10000 loops=1)
Merge Cond: (t1.id = t2.id)
-> Index Scan using idx_test_1 on test t1 (cost=0.29..367.29 rows=10000 width=45) (actual time=0.006..2.453 rows=10000 loops=1)
-> Index Scan using idx_test1_id on test1 t2 (cost=0.29..367.29 rows=10000 width=45) (actual time=0.006..3.625 rows=10000 loops=1)
Planning time: 0.309 ms
Execution time: 11.304 ms
(6 rows)
# 如果没有索引,效率最差,先全表扫描,然后排序,再join
db1=# explain analyze select t1.*,t2.* from test t1 join test1 t2 on t1.id=t2.id;
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------
Merge Join (cost=1716.77..1916.77 rows=10000 width=90) (actual time=3.090..7.286 rows=10000 loops=1)
Merge Cond: (t1.id = t2.id)
-> Sort (cost=858.39..883.39 rows=10000 width=45) (actual time=1.571..2.007 rows=10000 loops=1)
Sort Key: t1.id
Sort Method: quicksort Memory: 1166kB
-> Seq Scan on test t1 (cost=0.00..194.00 rows=10000 width=45) (actual time=0.005..0.789 rows=10000 loops=1)
-> Sort (cost=858.39..883.39 rows=10000 width=45) (actual time=1.514..2.039 rows=10000 loops=1)
Sort Key: t2.id
Sort Method: quicksort Memory: 1166kB
-> Seq Scan on test1 t2 (cost=0.00..194.00 rows=10000 width=45) (actual time=0.003..0.748 rows=10000 loops=1)
Planning time: 0.171 ms
Execution time: 7.614 ms
(12 rows)
# 自动使用hash join
db1=# set enable_hashjoin=on;set enable_indexscan=on;set enable_bitmapscan=on;
SET
db1=# explain analyze select t1.*,t2.* from test t1 join test1 t2 on t1.id=t2.id;
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------
Hash Join (cost=319.00..763.00 rows=10000 width=90) (actual time=2.208..7.150 rows=10000 loops=1)
Hash Cond: (t1.id = t2.id)
-> Seq Scan on test t1 (cost=0.00..194.00 rows=10000 width=45) (actual time=0.005..0.966 rows=10000 loops=1)
-> Hash (cost=194.00..194.00 rows=10000 width=45) (actual time=2.160..2.160 rows=10000 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 782kB
-> Seq Scan on test1 t2 (cost=0.00..194.00 rows=10000 width=45) (actual time=0.003..0.959 rows=10000 loops=1)
Planning time: 0.211 ms
Execution time: 7.502 ms
(8 rows)
3.加速外键约束更新和删除操作
create table p(id int primary key, info text, crt_time timestamp);
create table f(id int primary key, p_id int references p(id) on delete cascade on update cascade, info text, crt_time timestamp);
insert into p select generate_series(1,10000), md5(random()::text), clock_timestamp();
insert into f select generate_series(1,10000), generate_series(1,10000), md5(random()::text), clock_timestamp();
f表的p_id列未加索引情况下
db1=# explain (analyze,verbose,costs,buffers,timing) update p set id=1 where id=0;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------
Update on public.p (cost=0.29..8.30 rows=1 width=47) (actual time=0.053..0.053 rows=0 loops=1)
Buffers: shared hit=7
-> Index Scan using p_pkey on public.p (cost=0.29..8.30 rows=1 width=47) (actual time=0.019..0.019 rows=1 loops=1)
Output: 1, info, crt_time, ctid
Index Cond: (p.id = 0)
Buffers: shared hit=3
Planning time: 0.068 ms
Trigger RI_ConstraintTrigger_a_16424 for constraint f_p_id_fkey on p: time=1.225 calls=1 # p表上耗时长
Trigger RI_ConstraintTrigger_c_16426 for constraint f_p_id_fkey on f: time=0.068 calls=1
Execution time: 1.377 ms
(10 rows)
增加p表索引后
create index idx_f_1 on f(p_id);
db1=# explain (analyze,verbose,costs,buffers,timing) update p set id=0 where id=1;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------
Update on public.p (cost=0.29..8.30 rows=1 width=47) (actual time=0.055..0.055 rows=0 loops=1)
Buffers: shared hit=7
-> Index Scan using p_pkey on public.p (cost=0.29..8.30 rows=1 width=47) (actual time=0.022..0.023 rows=1 loops=1)
Output: 0, info, crt_time, ctid
Index Cond: (p.id = 1)
Buffers: shared hit=3
Planning time: 0.079 ms
Trigger RI_ConstraintTrigger_a_16424 for constraint f_p_id_fkey on p: time=0.132 calls=1 # p表耗时短
Trigger RI_ConstraintTrigger_c_16426 for constraint f_p_id_fkey on f: time=0.085 calls=1
Execution time: 0.307 ms
(10 rows)
4.索引在排他约束中的使用
- 要求左右操作符互换对结果没有影响,例如x=y,y=x结果都是true或者unknown
db1=# CREATE TABLE test2(id int,geo point,EXCLUDE USING btree (id WITH pg_catalog.=));
CREATE TABLE
db1=# insert into test2 (id) values (1);
INSERT 0 1
db1=# insert into test2 (id) values (1);
ERROR: conflicting key value violates exclusion constraint "test2_id_excl"
DETAIL: Key (id)=(1) conflicts with existing key (id)=(1).
> 模拟unique
5.加速唯一值约束、排他约束
- 主键
- 唯一键
CREATE TABLE test3(id int,geo point,EXCLUDE USING spGIST (geo WITH pg_catalog.~=));
select * from pg_indexes where tablename='test3';
db1=# select * from pg_indexes where tablename='test3';
schemaname | tablename | indexname | tablespace | indexdef
------------+-----------+----------------+------------+---------------------------------------------------------
public | test3 | test3_geo_excl | | CREATE INDEX test3_geo_excl ON test3 USING spgist (geo)
(1 row)
三.索引的弊端
- 随着表的记录块的变迁需要更新,因此会对这类操作带来一定的性能影响
- 块不变更的情况下触发hot特性,可以不需要更新索引
- 写多读少的场景,索引弊端可能大于其好处
四.注意事项
- 1.正常创建索引时,会阻断除查询意外的其他操作
- 2.使用并行CONCURRENTLY选项后,可以允许同时对标的DML操作,但是对于频繁DML的表,这种创建索引的时间非常长
- 3.某些索引不记录WAL,所以如果有利于WAL进行数据恢复的情况,如crash recovery,流复制,warm standby等,这类索引在使用前需要重建(HASH索引)