zoukankan      html  css  js  c++  java
  • PyTorch 常用代码段整理

    基础配置

    检查 PyTorch 版本

    torch.__version__               # PyTorch version
    torch.version.cuda              # Corresponding CUDA version
    torch.backends.cudnn.version()  # Corresponding cuDNN version
    torch.cuda.get_device_name(0)   # GPU type

    更新 PyTorch

    PyTorch 将被安装在 anaconda3/lib/python3.7/site-packages/torch/目录下。

    conda update pytorch torchvision -c pytorch

    固定随机种子

    torch.manual_seed(0)
    torch.cuda.manual_seed_all(0)

    指定程序运行在特定 GPU 卡上

    在命令行指定环境变量

    CUDA_VISIBLE_DEVICES=0,1 python train.py

    或在代码中指定

    os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'

    判断是否有 CUDA 支持

    torch.cuda.is_available()

     

    设置为 cuDNN benchmark 模式

    Benchmark 模式会提升计算速度,但是由于计算中有随机性,每次网络前馈结果略有差异。

    torch.backends.cudnn.benchmark = True

    如果想要避免这种结果波动,设置

    torch.backends.cudnn.deterministic = True

    清除 GPU 存储

    有时 Control-C 中止运行后 GPU 存储没有及时释放,需要手动清空。在 PyTorch 内部可以

    torch.cuda.empty_cache()

    或在命令行可以先使用 ps 找到程序的 PID,再使用 kill 结束该进程

    ps aux | grep pythonkill -9 [pid]

    或者直接重置没有被清空的 GPU

    nvidia-smi --gpu-reset -i [gpu_id]


    张量处理

    张量基本信息

    tensor.type()   # Data type
    tensor.size()   # Shape of the tensor. It is a subclass of Python tuple
    tensor.dim()    # Number of dimensions.

    数据类型转换

    # Set default tensor type. Float in PyTorch is much faster than double.
    torch.set_default_tensor_type(torch.FloatTensor)

    # Type convertions.
    tensor = tensor.cuda()
    tensor = tensor.cpu()
    tensor = tensor.float()
    tensor = tensor.long()

    torch.Tensor 与 np.ndarray 转换

    # torch.Tensor -> np.ndarray.
    ndarray = tensor.cpu().numpy()

    # np.ndarray -> torch.Tensor.
    tensor = torch.from_numpy(ndarray).float()
    tensor = torch.from_numpy(ndarray.copy()).float()  # If ndarray has negative stride

    torch.Tensor 与 PIL.Image 转换

    PyTorch 中的张量默认采用 N×D×H×W 的顺序,并且数据范围在 [0, 1],需要进行转置和规范化。

    # torch.Tensor -> PIL.Image.
    image = PIL.Image.fromarray(torch.clamp(tensor * 255, min=0, max=255
        ).byte().permute(1, 2, 0).cpu().numpy())
    image = torchvision.transforms.functional.to_pil_image(tensor)  # Equivalently way

    # PIL.Image -> torch.Tensor.
    tensor = torch.from_numpy(np.asarray(PIL.Image.open(path))
        ).permute(2, 0, 1).float() / 255
    tensor = torchvision.transforms.functional.to_tensor(PIL.Image.open(path))  # Equivalently way

    np.ndarray 与 PIL.Image 转换

    # np.ndarray -> PIL.Image.
    image = PIL.Image.fromarray(ndarray.astypde(np.uint8))

    # PIL.Image -> np.ndarray.
    ndarray = np.asarray(PIL.Image.open(path))

    从只包含一个元素的张量中提取值

    这在训练时统计 loss 的变化过程中特别有用。否则这将累积计算图,使 GPU 存储占用量越来越大。

    value = tensor.item()

    张量形变

    张量形变常常需要用于将卷积层特征输入全连接层的情形。相比 torch.view,torch.reshape 可以自动处理输入张量不连续的情况。

    tensor = torch.reshape(tensor, shape)

    打乱顺序

    tensor = tensor[torch.randperm(tensor.size(0))]  # Shuffle the first dimension

    水平翻转

    PyTorch 不支持 tensor[::-1] 这样的负步长操作,水平翻转可以用张量索引实现。

    # Assume tensor has shape N*D*H*W.tensor = tensor[:, :, :, torch.arange(tensor.size(3) - 1, -1, -1).long()]

    复制张量

    有三种复制的方式,对应不同的需求。

    # Operation                 |  New/Shared memory | Still in computation graph |
    tensor.clone()            # |        New         |          Yes               |
    tensor.detach()           # |      Shared        |          No                |
    tensor.detach.clone()()   # |        New         |          No                |

    拼接张量

    注意 torch.cat 和 torch.stack 的区别在于 torch.cat 沿着给定的维度拼接,而 torch.stack 会新增一维。例如当参数是 3 个 10×5 的张量,torch.cat 的结果是 30×5 的张量,而 torch.stack 的结果是 3×10×5 的张量。

    tensor = torch.cat(list_of_tensors, dim=0)
    tensor = torch.stack(list_of_tensors, dim=0)

    将整数标记转换成独热(one-hot)编码

    PyTorch 中的标记默认从 0 开始。

    N = tensor.size(0)
    one_hot = torch.zeros(N, num_classes).long()
    one_hot.scatter_(dim=1, index=torch.unsqueeze(tensor, dim=1), src=torch.ones(N, num_classes).long())

    得到非零/零元素

    torch.nonzero(tensor)               # Index of non-zero elements
    torch.nonzero(tensor == 0)          # Index of zero elements
    torch.nonzero(tensor).size(0)       # Number of non-zero elements
    torch.nonzero(tensor == 0).size(0)  # Number of zero elements

    张量扩展

    # Expand tensor of shape 64*512 to shape 64*512*7*7.
    torch.reshape(tensor, (64, 512, 1, 1)).expand(64, 512, 7, 7)

    矩阵乘法

    # Matrix multiplication: (m*n) * (n*p) -> (m*p).
    result = torch.mm(tensor1, tensor2)

    # Batch matrix multiplication: (b*m*n) * (b*n*p) -> (b*m*p).
    result = torch.bmm(tensor1, tensor2)

    # Element-wise multiplication.
    result = tensor1 * tensor2

    计算两组数据之间的两两欧式距离

    # X1 is of shape m*d.
    X1 = torch.unsqueeze(X1, dim=1).expand(m, n, d)
    # X2 is of shape n*d.
    X2 = torch.unsqueeze(X2, dim=0).expand(m, n, d)
    # dist is of shape m*n, where dist[i][j] = sqrt(|X1[i, :] - X[j, :]|^2)
    dist = torch.sqrt(torch.sum((X1 - X2) ** 2, dim=2))

    模型定义

    卷积层

    最常用的卷积层配置是

    conv = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=True)conv = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=True)

    如果卷积层配置比较复杂,不方便计算输出大小时,可以利用如下可视化工具辅助

    链接:https://ezyang.github.io/convolution-visualizer/index.html

    0GAP(Global average pooling)层

    gap = torch.nn.AdaptiveAvgPool2d(output_size=1)

    双线性汇合(bilinear pooling)

    X = torch.reshape(N, D, H * W)                        # Assume X has shape N*D*H*W
    X = torch.bmm(X, torch.transpose(X, 1, 2)) / (H * W)  # Bilinear pooling
    assert X.size() == (N, D, D)
    X = torch.reshape(X, (N, D * D))
    X = torch.sign(X) * torch.sqrt(torch.abs(X) + 1e-5)   # Signed-sqrt normalization
    X = torch.nn.functional.normalize(X)                  # L2 normalization

    多卡同步 BN(Batch normalization)

    当使用 torch.nn.DataParallel 将代码运行在多张 GPU 卡上时,PyTorch 的 BN 层默认操作是各卡上数据独立地计算均值和标准差,同步 BN 使用所有卡上的数据一起计算 BN 层的均值和标准差,缓解了当批量大小(batch size)比较小时对均值和标准差估计不准的情况,是在目标检测等任务中一个有效的提升性能的技巧。

    链接:https://github.com/vacancy/Synchronized-BatchNorm-PyTorch

    类似 BN 滑动平均

    如果要实现类似 BN 滑动平均的操作,在 forward 函数中要使用原地(inplace)操作给滑动平均赋值。

    class BN(torch.nn.Module)

        def __init__(self):
            ...
            self.register_buffer('running_mean', torch.zeros(num_features))

        def forward(self, X):
            ...
            self.running_mean += momentum * (current - self.running_mean)

    计算模型整体参数量

    num_parameters = sum(torch.numel(parameter) for parameter in model.parameters())

    类似 Keras 的 model.summary() 输出模型信息

    链接:https://github.com/sksq96/pytorch-summary

    模型权值初始化

    注意 model.modules() 和 model.children() 的区别:model.modules() 会迭代地遍历模型的所有子层,而 model.children() 只会遍历模型下的一层。

    # Common practise for initialization.
    for layer in model.modules():
        if isinstance(layer, torch.nn.Conv2d):
            torch.nn.init.kaiming_normal_(layer.weight, mode='fan_out',
                                          nonlinearity='relu')
            if layer.bias is not None:
                torch.nn.init.constant_(layer.bias, val=0.0)
        elif isinstance(layer, torch.nn.BatchNorm2d):
            torch.nn.init.constant_(layer.weight, val=1.0)
            torch.nn.init.constant_(layer.bias, val=0.0)
        elif isinstance(layer, torch.nn.Linear):
            torch.nn.init.xavier_normal_(layer.weight)
            if layer.bias is not None:
                torch.nn.init.constant_(layer.bias, val=0.0)

    # Initialization with given tensor.
    layer.weight = torch.nn.Parameter(tensor)

    部分层使用预训练模型

    注意如果保存的模型是 torch.nn.DataParallel,则当前的模型也需要是

    model.load_state_dict(torch.load('model,pth'), strict=False)

    将在 GPU 保存的模型加载到 CPU

    model.load_state_dict(torch.load('model,pth', map_location='cpu'))

    数据准备、特征提取与微调

    得到视频数据基本信息

    import cv2
    video = cv2.VideoCapture(mp4_path)
    height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
    width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
    num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = int(video.get(cv2.CAP_PROP_FPS))
    video.release()

    TSN 每段(segment)采样一帧视频

    K = self._num_segments
    if is_train:
        if num_frames > K:
            # Random index for each segment.
            frame_indices = torch.randint(
                high=num_frames // K, size=(K,), dtype=torch.long)
            frame_indices += num_frames // K * torch.arange(K)
        else:
            frame_indices = torch.randint(
                high=num_frames, size=(K - num_frames,), dtype=torch.long)
            frame_indices = torch.sort(torch.cat((
                torch.arange(num_frames), frame_indices)))[0]
    else:
        if num_frames > K:
            # Middle index for each segment.
            frame_indices = num_frames / K // 2
            frame_indices += num_frames // K * torch.arange(K)
        else:
            frame_indices = torch.sort(torch.cat((                             
                torch.arange(num_frames), torch.arange(K - num_frames))))[0]
    assert frame_indices.size() == (K,)
    return [frame_indices[i] for i in range(K)] 

    提取 ImageNet 预训练模型某层的卷积特征

    # VGG-16 relu5-3 feature.
    model = torchvision.models.vgg16(pretrained=True).features[:-1]
    # VGG-16 pool5 feature.
    model = torchvision.models.vgg16(pretrained=True).features
    # VGG-16 fc7 feature.
    model = torchvision.models.vgg16(pretrained=True)
    model.classifier = torch.nn.Sequential(*list(model.classifier.children())[:-3])
    # ResNet GAP feature.
    model = torchvision.models.resnet18(pretrained=True)
    model = torch.nn.Sequential(collections.OrderedDict(
        list(model.named_children())[:-1]))

    with torch.no_grad():
        model.eval()
        conv_representation = model(image)

    提取 ImageNet 预训练模型多层的卷积特征

    class FeatureExtractor(torch.nn.Module):
        """Helper class to extract several convolution features from the given
        pre-trained model.

        Attributes:
            _model, torch.nn.Module.
            _layers_to_extract, list<str> or set<str>

        Example:
            >>> model = torchvision.models.resnet152(pretrained=True)
            >>> model = torch.nn.Sequential(collections.OrderedDict(
                    list(model.named_children())[:-1]))
            >>> conv_representation = FeatureExtractor(
                    pretrained_model=model,
                    layers_to_extract={'layer1', 'layer2', 'layer3', 'layer4'})(image)
        """
        def __init__(self, pretrained_model, layers_to_extract):
            torch.nn.Module.__init__(self)
            self._model = pretrained_model
            self._model.eval()
            self._layers_to_extract = set(layers_to_extract)

        def forward(self, x):
            with torch.no_grad():
                conv_representation = []
                for name, layer in self._model.named_children():
                    x = layer(x)
                    if name in self._layers_to_extract:
                        conv_representation.append(x)
                return conv_representation

    其他预训练模型

    链接:https://github.com/Cadene/pretrained-models.pytorch

    微调全连接层

    model = torchvision.models.resnet18(pretrained=True)
    for param in model.parameters():
        param.requires_grad = False
    model.fc = nn.Linear(512, 100)  # Replace the last fc layer
    optimizer = torch.optim.SGD(model.fc.parameters(), lr=1e-2, momentum=0.9, weight_decay=1e-4)

    以较大学习率微调全连接层,较小学习率微调卷积层

    model = torchvision.models.resnet18(pretrained=True)
    finetuned_parameters = list(map(id, model.fc.parameters()))
    conv_parameters = (p for p in model.parameters() if id(p) not in finetuned_parameters)
    parameters = [{'params': conv_parameters, 'lr': 1e-3},
                  {'params': model.fc.parameters()}]
    optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)


    模型训练

    常用训练和验证数据预处理

    其中 ToTensor 操作会将 PIL.Image 或形状为 H×W×D,数值范围为 [0, 255] 的 np.ndarray 转换为形状为 D×H×W,数值范围为 [0.0, 1.0] 的 torch.Tensor。

    train_transform = torchvision.transforms.Compose([
        torchvision.transforms.RandomResizedCrop(size=224,
                                                 scale=(0.08, 1.0)),
        torchvision.transforms.RandomHorizontalFlip(),
        torchvision.transforms.ToTensor(),
        torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
                                         std=(0.229, 0.224, 0.225)),
     ])
     val_transform = torchvision.transforms.Compose([
        torchvision.transforms.Resize(224),
        torchvision.transforms.CenterCrop(224),
        torchvision.transforms.ToTensor(),
        torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
                                         std=(0.229, 0.224, 0.225)),
    ])

    训练基本代码框架

    for t in epoch(80):
        for images, labels in tqdm.tqdm(train_loader, desc='Epoch %3d' % (t + 1)):
            images, labels = images.cuda(), labels.cuda()
            scores = model(images)
            loss = loss_function(scores, labels)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

    标记平滑(label smoothing)

    for images, labels in train_loader:
        images, labels = images.cuda(), labels.cuda()
        N = labels.size(0)
        # C is the number of classes.
        smoothed_labels = torch.full(size=(N, C), fill_value=0.1 / (C - 1)).cuda()
        smoothed_labels.scatter_(dim=1, index=torch.unsqueeze(labels, dim=1), value=0.9)

        score = model(images)
        log_prob = torch.nn.functional.log_softmax(score, dim=1)
        loss = -torch.sum(log_prob * smoothed_labels) / N
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    Mixup

    beta_distribution = torch.distributions.beta.Beta(alpha, alpha)
    for images, labels in train_loader:
        images, labels = images.cuda(), labels.cuda()

        # Mixup images.
        lambda_ = beta_distribution.sample([]).item()
        index = torch.randperm(images.size(0)).cuda()
        mixed_images = lambda_ * images + (1 - lambda_) * images[index, :]

        # Mixup loss.   
        scores = model(mixed_images)
        loss = (lambda_ * loss_function(scores, labels)
                + (1 - lambda_) * loss_function(scores, labels[index]))

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()



    L1 正则化

    l1_regularization = torch.nn.L1Loss(reduction='sum')
    loss = ...  # Standard cross-entropy loss
    for param in model.parameters():
        loss += torch.sum(torch.abs(param))
    loss.backward()

    不对偏置项进行 L2 正则化/权值衰减(weight decay)

    bias_list = (param for name, param in model.named_parameters() if name[-4:] == 'bias')
    others_list = (param for name, param in model.named_parameters() if name[-4:] != 'bias')
    parameters = [{'parameters': bias_list, 'weight_decay': 0},               
                  {'parameters': others_list}]
    optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)

    梯度裁剪(gradient clipping)

    torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=20)

    计算 Softmax 输出的准确率 

    score = model(images)
    prediction = torch.argmax(score, dim=1)
    num_correct = torch.sum(prediction == labels).item()
    accuruacy = num_correct / labels.size(0)

    可视化模型前馈的计算图

    链接:https://github.com/szagoruyko/pytorchviz

    可视化学习曲线

    有 Facebook 自己开发的 Visdom 和 Tensorboard 两个选择。

    https://github.com/facebookresearch/visdom

    https://github.com/lanpa/tensorboardX

     

    # Example using Visdom.
    vis = visdom.Visdom(env='Learning curve', use_incoming_socket=False)
    assert self._visdom.check_connection()
    self._visdom.close()
    options = collections.namedtuple('Options', ['loss', 'acc', 'lr'])(
        loss={'xlabel': 'Epoch', 'ylabel': 'Loss', 'showlegend': True},
        acc={'xlabel': 'Epoch', 'ylabel': 'Accuracy', 'showlegend': True},
        lr={'xlabel': 'Epoch', 'ylabel': 'Learning rate', 'showlegend': True})

    for t in epoch(80):
        tran(...)
        val(...)
        vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([train_loss]),
                 name='train', win='Loss', update='append', opts=options.loss)
        vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([val_loss]),
                 name='val', win='Loss', update='append', opts=options.loss)
        vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([train_acc]),
                 name='train', win='Accuracy', update='append', opts=options.acc)
        vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([val_acc]),
                 name='val', win='Accuracy', update='append', opts=options.acc)
        vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([lr]),
                 win='Learning rate', update='append', opts=options.lr)

    得到当前学习率

    # If there is one global learning rate (which is the common case).
    lr = next(iter(optimizer.param_groups))['lr']

    # If there are multiple learning rates for different layers.
    all_lr = []
    for param_group in optimizer.param_groups:
        all_lr.append(param_group['lr'])

    学习率衰减

    # Reduce learning rate when validation accuarcy plateau.
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', patience=5, verbose=True)
    for t in range(0, 80):
        train(...); val(...)
        scheduler.step(val_acc)

    # Cosine annealing learning rate.
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=80)
    # Reduce learning rate by 10 at given epochs.
    scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[50, 70], gamma=0.1)
    for t in range(0, 80):
        scheduler.step()   
        train(...); val(...)

    # Learning rate warmup by 10 epochs.
    scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda t: t / 10)
    for t in range(0, 10):
        scheduler.step()
        train(...); val(...)

    保存与加载断点

    注意为了能够恢复训练,我们需要同时保存模型和优化器的状态,以及当前的训练轮数。

    # Save checkpoint.
    is_best = current_acc > best_acc
    best_acc = max(best_acc, current_acc)
    checkpoint = {
        'best_acc': best_acc,   
        'epoch': t + 1,
        'model': model.state_dict(),
        'optimizer': optimizer.state_dict(),
    }
    model_path = os.path.join('model', 'checkpoint.pth.tar')
    torch.save(checkpoint, model_path)
    if is_best:
        shutil.copy('checkpoint.pth.tar', model_path)

    # Load checkpoint.
    if resume:
        model_path = os.path.join('model', 'checkpoint.pth.tar')
        assert os.path.isfile(model_path)
        checkpoint = torch.load(model_path)
        best_acc = checkpoint['best_acc']
        start_epoch = checkpoint['epoch']
        model.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        print('Load checkpoint at epoch %d.' % start_epoch)


    计算准确率、查准率(precision)、查全率(recall)

    # data['label'] and data['prediction'] are groundtruth label and prediction
    # for each image, respectively.
    accuracy = np.mean(data['label'] == data['prediction']) * 100

    # Compute recision and recall for each class.
    for c in range(len(num_classes)):
        tp = np.dot((data['label'] == c).astype(int),
                    (data['prediction'] == c).astype(int))
        tp_fp = np.sum(data['prediction'] == c)
        tp_fn = np.sum(data['label'] == c)
        precision = tp / tp_fp * 100
        recall = tp / tp_fn * 100

    PyTorch 其他注意事项

    模型定义

    • 建议有参数的层和汇合(pooling)层使用 torch.nn 模块定义,激活函数直接使用 torch.nn.functional。torch.nn 模块和 torch.nn.functional 的区别在于,torch.nn 模块在计算时底层调用了 torch.nn.functional,但 torch.nn 模块包括该层参数,还可以应对训练和测试两种网络状态。使用 torch.nn.functional 时要注意网络状态,如

    def forward(self, x):
        ...
        x = torch.nn.functional.dropout(x, p=0.5, training=self.training)

    • model(x) 前用 model.train() 和 model.eval() 切换网络状态。
    • 不需要计算梯度的代码块用 with torch.no_grad() 包含起来。model.eval() 和 torch.no_grad() 的区别在于,model.eval() 是将网络切换为测试状态,例如 BN 和随机失活(dropout)在训练和测试阶段使用不同的计算方法。torch.no_grad() 是关闭 PyTorch 张量的自动求导机制,以减少存储使用和加速计算,得到的结果无法进行 loss.backward()。
    • torch.nn.CrossEntropyLoss 的输入不需要经过 Softmax。torch.nn.CrossEntropyLoss 等价于 torch.nn.functional.log_softmax + torch.nn.NLLLoss。
    • loss.backward() 前用 optimizer.zero_grad() 清除累积梯度。optimizer.zero_grad() 和 model.zero_grad() 效果一样。

    PyTorch 性能与调试

    • torch.utils.data.DataLoader 中尽量设置 pin_memory=True,对特别小的数据集如 MNIST 设置 pin_memory=False 反而更快一些。num_workers 的设置需要在实验中找到最快的取值。
    • 用 del 及时删除不用的中间变量,节约 GPU 存储。
    • 使用 inplace 操作可节约 GPU 存储,如

    x = torch.nn.functional.relu(x, inplace=True)

    • 减少 CPU 和 GPU 之间的数据传输。例如如果你想知道一个 epoch 中每个 mini-batch 的 loss 和准确率,先将它们累积在 GPU 中等一个 epoch 结束之后一起传输回 CPU 会比每个 mini-batch 都进行一次 GPU 到 CPU 的传输更快。
    • 使用半精度浮点数 half() 会有一定的速度提升,具体效率依赖于 GPU 型号。需要小心数值精度过低带来的稳定性问题。
    • 时常使用 assert tensor.size() == (N, D, H, W) 作为调试手段,确保张量维度和你设想中一致。
    • 除了标记 y 外,尽量少使用一维张量,使用 n*1 的二维张量代替,可以避免一些意想不到的一维张量计算结果。
    • 统计代码各部分耗时

    with torch.autograd.profiler.profile(enabled=True, use_cuda=False) as profile:
        ...
    print(profile)

    或者在命令行运行

    python -m torch.utils.bottleneck main.py

     ======================================================

     

    C:WINDOWSsystem32>S:MongoDBServer4.0in

    C:WINDOWSsystem32>S:

     S:MongoDBServer4.0in>mongod --dbpath "S:MongoDBServer4.0datadb" --logpath "S:MongoDBServer4.0logmongo.log" --install --serviceName "MongoDB"

    2019-06-28T10:43:50.342+0800 I CONTROL  [main] log file "S:MongoDBServer4.0logmongo.log" exists; moved to "S:MongoDBServer4.0logmongo.log.2019-06-28T02-43-50".

     S:MongoDBServer4.0in>net start mongodb

    MongoDB Server 服务正在启动 ..

    MongoDB Server 服务已经启动成功。

     S:MongoDBServer4.0in>

     可视化MongoDB:

    PyCharm和Robo 3T 1.3.1对MongoDB可视化

  • 相关阅读:
    数据结构(2)-链表
    数据结构(1)-数组
    SpringMVC学习总结(一)--Hello World入门
    基本数据类型对象的包装类
    关于String的相关常见方法
    常见的集合容器应当避免的坑
    再一次生产 CPU 高负载排查实践
    分表后需要注意的二三事
    线程池没你想的那么简单(续)
    线程池没你想的那么简单
  • 原文地址:https://www.cnblogs.com/jeshy/p/11166029.html
Copyright © 2011-2022 走看看