zoukankan      html  css  js  c++  java
  • Recurrent neural network (RNN)

    import torch
    import torch.nn as nn
    import torchvision
    import torchvision.transforms as transforms
    
    # 配置GPU或CPU设置
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    # 超参数设置
    sequence_length = 28
    input_size = 28
    hidden_size = 128
    num_layers = 2
    num_classes = 10
    batch_size = 100
    num_epochs = 2
    learning_rate = 0.01
    
    # MNIST dataset
    train_dataset = torchvision.datasets.MNIST(root='./data/',
                                               train=True,
                                               transform=transforms.ToTensor(),# 将PIL Image或者 ndarray 转换为tensor,并且归一化至[0-1],归一化至[0-1]是直接除以255
                                               download=True)
    
    test_dataset = torchvision.datasets.MNIST(root='./data/',
                                              train=False,
                                              transform=transforms.ToTensor())# 将PIL Image或者 ndarray 转换为tensor,并且归一化至[0-1],归一化至[0-1]是直接除以255
    
    # 训练数据加载,按照batch_size大小加载,并随机打乱
    train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                               batch_size=batch_size,
                                               shuffle=True)
    # 测试数据加载,按照batch_size大小加载
    test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                              batch_size=batch_size,
                                              shuffle=False)
    
    
    # Recurrent neural network (many-to-one) 多对一
    class RNN(nn.Module):
        def __init__(self, input_size, hidden_size, num_layers, num_classes):
            super(RNN, self).__init__() # 继承 __init__ 功能
            self.hidden_size = hidden_size
            self.num_layers = num_layers
            self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) # if use nn.RNN(), it hardly learns  LSTM 效果要比 nn.RNN() 好多了
            self.fc = nn.Linear(hidden_size, num_classes)
    
        def forward(self, x):
            # Set initial hidden and cell states
            h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
            c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
    
            # Forward propagate LSTM
            out, _ = self.lstm(x, (h0, c0))  # out: tensor of shape (batch_size, seq_length, hidden_size)
    
            # Decode the hidden state of the last time step
            out = self.fc(out[:, -1, :])
            return out
    
    
    model = RNN(input_size, hidden_size, num_layers, num_classes).to(device)
    print(model)
    # RNN((lstm): LSTM(28, 128, num_layers=2, batch_first=True)
    #     (fc): Linear(in_features=128, out_features=10, bias=True))
    
    # 损失函数与优化器设置
    # 损失函数
    criterion = nn.CrossEntropyLoss()
    # 优化器设置 ,并传入RNN模型参数和相应的学习率
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
    
    # 训练模型
    total_step = len(train_loader)
    for epoch in range(num_epochs):
        for i, (images, labels) in enumerate(train_loader):
            images = images.reshape(-1, sequence_length, input_size).to(device)
            labels = labels.to(device)
    
            # 前向传播
            outputs = model(images)
            # 计算损失 loss
            loss = criterion(outputs, labels)
    
            # 反向传播与优化
            # 清空上一步的残余更新参数值
            optimizer.zero_grad()
            # 反向传播
            loss.backward()
            # 将参数更新值施加到RNN model的parameters上
            optimizer.step()
            # 每迭代一定步骤,打印结果值
            if (i + 1) % 100 == 0:
                print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
                       .format(epoch + 1, num_epochs, i + 1, total_step, loss.item()))
    
    # 测试模型
    with torch.no_grad():
        correct = 0
        total = 0
        for images, labels in test_loader:
            images = images.reshape(-1, sequence_length, input_size).to(device)
            labels = labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    
        print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))
    
    # 保存已经训练好的模型
    # Save the model checkpoint
    torch.save(model.state_dict(), 'model.ckpt')
    

      

  • 相关阅读:
    本周总结
    本周总结
    本周总结
    本周总结
    性能分析(4)
    大型网站高性能架构
    第二天大数据清洗
    性能分析(2)
    六大质量属性——性能分析(1)
    java设计模式9-代理模式
  • 原文地址:https://www.cnblogs.com/jeshy/p/11438389.html
Copyright © 2011-2022 走看看