zoukankan      html  css  js  c++  java
  • 北京6环边界Geo范围的外边长与区域面积计算

    from shapely.geometry import Polygon
    import geopandas as gpd
    # 粗略的北京六环道路  见 北京6环边界Geo范围数据 - by BBBike https://www.cnblogs.com/jeshy/p/14868463.html
    poly = Polygon([(116.072, 39.714),
            (116.075, 39.705),
            (116.078, 39.695),
            (116.099, 39.688),
            (116.122, 39.688),
            (116.167, 39.685),
            (116.202, 39.684),
            (116.275, 39.682),
            (116.37, 39.701),
            (116.415, 39.711),
            (116.459, 39.715),
            (116.516, 39.729),
            (116.543, 39.734),
            (116.604, 39.749),
            (116.627, 39.769),
            (116.648, 39.788),
            (116.665, 39.806),
            (116.673, 39.815),
            (116.685, 39.824),
            (116.691, 39.832),
            (116.697, 39.841),
            (116.707, 39.864),
            (116.712, 39.874),
            (116.715, 39.884),
            (116.718, 39.904),
            (116.718, 39.922),
            (116.714, 39.938),
            (116.715, 39.952),
            (116.716, 39.965),
            (116.709, 39.993),
            (116.7, 40.005),
            (116.69, 40.016),
            (116.661, 40.057),
            (116.656, 40.064),
            (116.652, 40.069),
            (116.643, 40.078),
            (116.64, 40.082),
            (116.637, 40.086),
            (116.633, 40.091),
            (116.63, 40.103),
            (116.629, 40.107),
            (116.627, 40.112),
            (116.624, 40.121),
            (116.623, 40.132),
            (116.617, 40.142),
            (116.613, 40.145),
            (116.608, 40.146),
            (116.601, 40.147),
            (116.584, 40.149),
            (116.542, 40.152),
            (116.501, 40.161),
            (116.468, 40.164),
            (116.399, 40.164),
            (116.344, 40.178),
            (116.279, 40.181),
            (116.173, 40.175),
            (116.15, 40.161),
            (116.138, 40.126),
            (116.129, 40.086),
            (116.11, 40.066),
            (116.08, 40.029),
            (116.071, 39.98),
            (116.099, 39.94),
            (116.122, 39.909),
            (116.122, 39.885),
            (116.11, 39.859),
            (116.096, 39.814),
            (116.091, 39.797),
            (116.084, 39.787),
            (116.077, 39.75),
            (116.073, 39.734)])
    
    crs = {'init': 'epsg:4326'}
    gpoly = gpd.GeoSeries(poly, crs=crs)
    print('gpoly.crs:', gpoly.crs)
    
    gpoly = gpoly.to_crs(epsg=2436)
    print('gpoly.to_crs:', gpoly.crs)
    
    poly = gpoly[0]
    print('area(km*km):', poly.area/1.0e6)
    print('length(km):', poly.length/1.0e3)
    # area(km*km): 2487.234688144363
    # length(km): 191.11631267814698
    
    #############################################################
    
    from shapely.geometry import Polygon
    import xml.etree.cElementTree as et
    import matplotlib.pyplot as plt
    import geopandas as gpd
    import numpy as np
    
    # 精确的北京六环道路 见 beijing_car_seg_6ring road.osm: (北京六环附近及往内的可驾驶道路网络(路网graph为连通图))https://www.cnblogs.com/jeshy/p/14763489.html
    # beijing_car_seg_6ring road.osm as the input data
    root = et.parse(r"./beijing_car_seg_6ring road.osm").getroot()
    nodes = {}
    for node in root.findall('node'):
        nodes[int(node.attrib['id'])] = (float(node.attrib['lon']), float(node.attrib['lat']))
    edges = []
    for way in root.findall('way'):
        element_nd = way.findall('nd')
        node_s, node_e = int(element_nd[0].attrib['ref']), int(element_nd[1].attrib['ref'])
        path = (node_s, node_e)
        edges.append(path)
    edge = edges[0]
    E = []
    E.append(edge)
    edges.remove(edge)
    point_s, point_e = nodes[E[0][0]], nodes[E[0][1]]
    Point_lists = []
    Point_lists.append(list(point_s))
    Point_lists.append(list(point_e))
    while len(edges) > 0:
        (node_f_s, node_f_e) = E[-1]
        for (node_n_s, node_n_e) in edges:
            if node_f_e == node_n_s:
                E.append((node_n_s, node_n_e))
                point_f_e = nodes[node_n_e]
                Point_lists.append(list(point_f_e))
                # print((node_n_s, node_n_e))
                edges.remove((node_n_s, node_n_e))
                break
    # Points.pop()
    print(E[0], '...', E[-2], E[-1])
    print(Point_lists[0], '...', Point_lists[-2], Point_lists[-1])
    
    road_line_arr = np.array(Point_lists)  # 转换成二维坐标表示
    six_ring_plg = Polygon(road_line_arr)  # Polygon
    
    crs = {'init': 'epsg:4326'}
    gpoly = gpd.GeoSeries(six_ring_plg, crs=crs)
    print('gpoly.crs:', gpoly.crs)
    
    gpoly = gpoly.to_crs(epsg=2436)
    print('gpoly.to_crs:', gpoly.crs)
    
    poly = gpoly[0]
    print('area(km*km):', poly.area/1.0e6)
    print('length(km):', poly.length/1.0e3)
    # area(km*km): 2270.593649051131
    # length(km): 187.67214535661333
    个人学习记录
  • 相关阅读:
    centos7 升级openssh到openssh-8.0p1版本
    CentOS7.6安装docker最新版
    通过iptables限制docker容器端口
    nginx设置反向代理,获取真实客户端ip
    CentOS7.6使用Virt-manager创建虚拟机报错
    CentOS7添加/删除用户和用户组
    ubuntu14.04 部署nfs服务
    centos7 firewall指定IP与端口访问(常用)
    linux下yum安装最新稳定版nginx
    C语言中点操作符(.)和箭头操作符(->)
  • 原文地址:https://www.cnblogs.com/jeshy/p/14879803.html
Copyright © 2011-2022 走看看