1 import pickle 2 import numpy as np 3 import pandas as pd 4 import networkx as nx 5 import geopandas as gpd 6 import scipy.sparse as sp 7 import matplotlib.pyplot as plt 8 from scipy.spatial import cKDTree 9 import xml.etree.cElementTree as et 10 from joblib import Parallel, delayed 11 from shapely.geometry import Point, MultiLineString, Polygon 12 from sklearn.metrics.pairwise import pairwise_kernels, rbf_kernel 13 from sklearn.neighbors import kneighbors_graph, radius_neighbors_graph 14 15 # get coo_matrix from G. 16 def get_coo_matrix_from_G(G, weight=None): 17 from scipy.sparse import coo_matrix 18 row = np.array([u for u, _ in G.edges(data=False)]) 19 col = np.array([v for _, v in G.edges(data=False)]) 20 if weight is not None: 21 data = np.array([w['weight'] for _, __, w in G.edges(data=True)]) 22 else: 23 data = np.ones(shape=row.shape, dtype=np.float) 24 coo_mat = coo_matrix((data, (row, col)), dtype=np.float) 25 row = coo_mat.row 26 col = coo_mat.col 27 data = coo_mat.data 28 return row, col, data 29 30 def get_Vigidegi(row, col, data, ndq): 31 deg_ndq = {} # ndq degrees 32 nodes = [] 33 weights = [] 34 for nd in ndq: 35 index_row = np.where(row == nd) 36 index_col = np.where(col == nd) 37 u = list(row[index_col]) + list(col[index_row]) 38 index_data = np.array(list(index_row[0]) + list(index_col[0]), dtype=np.int) 39 w = list(data[index_data]) 40 deg_ndq[nd] = np.sum(w) 41 nodes += u 42 weights += w 43 for nd in ndq: 44 for _ in range(nodes.count(nd)): 45 nodes.remove(nd) 46 # V_G = np.sum(data) * 2.0 47 deg_i = deg_ndq 48 gi = len(nodes) 49 Vi = np.sum(weights) 50 return Vi, gi, deg_i 51 52 def get_Vgdeg(row, col, data, ndq_a, ndq_b): 53 ndq = ndq_a + ndq_b 54 L_X, L_Y, L_XY = len(ndq_a), len(ndq_b), len(ndq) 55 deg_ndq = {} # ndq degrees 56 nodes_a, weights_a = [], [] 57 nodes_b, weights_b = [], [] 58 nodes, weights = [], [] 59 for nd in ndq[:L_X]: 60 index_row = np.where(row == nd) 61 index_col = np.where(col == nd) 62 u = list(row[index_col]) + list(col[index_row]) 63 index_data = np.array(list(index_row[0]) + list(index_col[0]), dtype=np.int) 64 w = list(data[index_data]) 65 deg_ndq[nd] = np.sum(w) 66 nodes += u 67 weights += w 68 nodes_a += nodes 69 weights_a += weights 70 for nd in ndq[L_X:]: 71 index_row = np.where(row == nd) 72 index_col = np.where(col == nd) 73 u = list(row[index_col]) + list(col[index_row]) 74 index_data = np.array(list(index_row[0]) + list(index_col[0]), dtype=np.int) 75 w = list(data[index_data]) 76 deg_ndq[nd] = np.sum(w) 77 nodes += u 78 weights += w 79 nodes_b += nodes[len(nodes_a):len(nodes)] 80 weights_b += weights[len(weights_a):len(weights)] 81 for nd in ndq[:L_X]: 82 for _ in range(nodes.count(nd)): 83 nodes.remove(nd) 84 for _ in range(nodes_a.count(nd)): 85 nodes_a.remove(nd) 86 for nd in ndq[L_X:]: 87 for _ in range(nodes.count(nd)): 88 nodes.remove(nd) 89 for _ in range(nodes_b.count(nd)): 90 nodes_b.remove(nd) 91 # V_G = np.sum(data) * 2.0 92 deg_ij = deg_ndq 93 deg_i = {nd: deg_ndq[nd] for nd in ndq_a} 94 deg_j = {nd: deg_ndq[nd] for nd in ndq_b} 95 gi = len(nodes_a) 96 Vi = np.sum(weights_a) 97 gj = len(nodes_b) 98 Vj = np.sum(weights_b) 99 gij = len(nodes) 100 Vij = np.sum(weights) 101 return Vi, Vj, Vij, gi, gj, gij, deg_i, deg_j, deg_ij 102 103 def deltDI_ij(row, col, data, ndq_a, ndq_b): 104 ndq = ndq_a + ndq_b 105 L_X, L_Y, L_XY = len(ndq_a), len(ndq_b), len(ndq) 106 deg_ndq = {} # ndq degrees 107 nodes_a, weights_a = [], [] 108 nodes_b, weights_b = [], [] 109 nodes, weights = [], [] 110 for nd in ndq[:L_X]: 111 index_row = np.where(row == nd) 112 index_col = np.where(col == nd) 113 u = list(row[index_col]) + list(col[index_row]) 114 index_data = np.array(list(index_row[0]) + list(index_col[0]), dtype=np.int) 115 w = list(data[index_data]) 116 deg_ndq[nd] = np.sum(w) 117 nodes += u 118 weights += w 119 nodes_a += nodes 120 weights_a += weights 121 for nd in ndq[L_X:]: 122 index_row = np.where(row == nd) 123 index_col = np.where(col == nd) 124 u = list(row[index_col]) + list(col[index_row]) 125 index_data = np.array(list(index_row[0]) + list(index_col[0]), dtype=np.int) 126 w = list(data[index_data]) 127 deg_ndq[nd] = np.sum(w) 128 nodes += u 129 weights += w 130 nodes_b += nodes[len(nodes_a):len(nodes)] 131 weights_b += weights[len(weights_a):len(weights)] 132 133 for nd in ndq[:L_X]: 134 for _ in range(nodes.count(nd)): 135 nodes.remove(nd) 136 for _ in range(nodes_a.count(nd)): 137 nodes_a.remove(nd) 138 for nd in ndq[L_X:]: 139 for _ in range(nodes.count(nd)): 140 nodes.remove(nd) 141 for _ in range(nodes_b.count(nd)): 142 nodes_b.remove(nd) 143 # deg_ij = deg_ndq 144 # deg_i = {nd: deg_ndq[nd] for nd in ndq_a} 145 # deg_j = {nd: deg_ndq[nd] for nd in ndq_b} 146 V_G = np.sum(data) * 2.0 147 g_i = len(nodes_a) 148 V_i = np.sum(weights_a) 149 g_j = len(nodes_b) 150 V_j = np.sum(weights_b) 151 g_ij = len(nodes) 152 V_ij = np.sum(weights) 153 154 if V_i < 1e-5: 155 V_i = 1.0 156 if V_j < 1e-5: 157 V_j = 1.0 158 if V_ij < 1e-5: 159 V_ij = 1.0 160 if V_G < 1e-5: 161 V_G = 1.0 162 163 delt = -(V_i - g_i) * np.log2(V_i) - (V_j - g_j) * np.log2(V_j) 164 + (V_ij - g_ij) * np.log2(V_ij) 165 + (V_i + V_j - V_ij - g_i - g_j + g_ij) * np.log2(V_G) 166 167 return delt / V_G 168 169 def parts_DI(row, col, data, ndq): 170 deg_ndq = {} # ndq degrees 171 nodes = [] 172 weights = [] 173 for nd in ndq: 174 index_row = np.where(row == nd) 175 index_col = np.where(col == nd) 176 u = list(row[index_col]) + list(col[index_row]) 177 index_data = np.array(list(index_row[0]) + list(index_col[0]), dtype=np.int) 178 w = list(data[index_data]) 179 deg_ndq[nd] = np.sum(w) 180 nodes += u 181 weights += w 182 for nd in ndq: 183 for _ in range(nodes.count(nd)): 184 nodes.remove(nd) 185 V_G = np.sum(data) * 2.0 186 # deg_i = deg_ndq 187 gi = len(nodes) 188 Vi = np.sum(weights) 189 V_div = Vi / V_G 190 V_div_hat = (Vi - gi) / V_G 191 192 return 0.0 if V_div < 1e-5 else -V_div_hat * np.log2(V_div) 193 194 def producer(N): 195 ndi = N[0] 196 N.remove(ndi) 197 for ndj in N: 198 yield list(ndi), list(ndj) 199 200 def partition_producer(partition): 201 for L in partition: 202 yield L 203 204 def pLog2p(p_i, eps=1e-10): 205 ind = np.where(p_i < eps) 206 if len(ind) > 0: 207 p_i[p_i < eps] = 1.0 208 return p_i * np.log2(p_i) 209 else: 210 return p_i * np.log2(p_i) 211 212 def Log2p(p_i, eps=1e-10): 213 ind = np.where(p_i < eps) 214 if len(ind) > 0: 215 p_i[p_i < eps] = 1.0 216 return np.log2(p_i) 217 else: 218 return np.log2(p_i) 219 220 # oneStruInforEntropy 221 def get_oneStruInforEntropy(G, weight=None): 222 G_du = G.degree(weight=weight) 223 G_volume = sum(G_du[index_node] for index_node in G.nodes) 224 G_pu_dic = {index_node: G_du[index_node] * 1.0 / (1.0 * G_volume) for index_node in G.nodes} 225 G_pu = [G_pu_dic[index_node] for index_node in G.nodes] 226 # Shonnon Entropy 227 HP_G_Shonnon = sum(pLog2p(np.array(G_pu))) * (-1.0) 228 return HP_G_Shonnon 229 230 # StruInforEntropy 231 def StruInforEntropy(G, partition, weight=None): 232 # nodes = G.nodes 233 # n = G.number_of_nodes() 234 # m = G.number_of_edges() 235 sub_set = partition.copy() 236 degree = G.degree(weight=weight) 237 G_volume = sum(degree[index_node] for index_node in G.nodes) 238 Vij, gij, deg_ij = [], [], [] 239 for ind in range(len(sub_set)): 240 sub_degree = 0 241 dij = [] 242 for node in sub_set[ind]: 243 sub_degree += degree[node] 244 dij.append(degree[node]) 245 gj_c = nx.cut_size(G, sub_set[ind], weight=weight) 246 Vij.append(sub_degree) 247 gij.append(gj_c) 248 deg_ij.append(np.array(dij)) 249 gij = np.array(gij, dtype=float) 250 Vij = np.array(Vij, dtype=float) 251 p_i = [deg_ij[i] / Vij[i] for i in range(len(Vij))] 252 pLogp = [pLog2p(pi, eps=1e-10) for pi in p_i] 253 sum_pLogp = np.array([np.sum(plp) for plp in pLogp], dtype=float) 254 255 first = np.sum((-1.0) * Vij / (G_volume) * sum_pLogp) 256 second = np.sum((-1.0) * gij / (G_volume) * Log2p(Vij / (G_volume))) 257 258 HG = first + second 259 260 return HG, Vij, gij, deg_ij 261 262 # StruInforEntropy 263 def get_oneStruInforEntropy_Partition(G, partition, weight=None): 264 # nodes = G.nodes 265 # n = G.number_of_nodes() 266 # m = G.number_of_edges() 267 sub_set = partition.copy() 268 degree = G.degree(weight=weight) 269 G_volume = sum(degree[index_node] for index_node in G.nodes) 270 Vij, gij, deg_ij = [], [], [] 271 for ind in range(len(sub_set)): 272 sub_degree = 0 273 dij = [] 274 for node in sub_set[ind]: 275 sub_degree += degree[node] 276 dij.append(degree[node]) 277 gj_c = nx.cut_size(G, sub_set[ind], weight=weight) 278 Vij.append(sub_degree) 279 gij.append(gj_c) 280 deg_ij.append(np.array(dij)) 281 gij = np.array(gij, dtype=float) 282 Vij = np.array(Vij, dtype=float) 283 p_i = [deg_ij[i] / Vij[i] for i in range(len(Vij))] 284 pLogp = [pLog2p(pi, eps=1e-10) for pi in p_i] 285 sum_pLogp = np.array([np.sum(plp) for plp in pLogp], dtype=float) 286 287 first = np.sum((-1.0) * Vij / (G_volume) * sum_pLogp) 288 second = np.sum((-1.0) * pLog2p(Vij / G_volume)) 289 290 oneHG = first + second 291 292 return oneHG, Vij, gij, deg_ij 293 294 # # test: 2D-StruInforEntropy 295 # partition = [{0, 1, 2, 3}, {4, 5, 6, 7, 8}, {9, 10, 11, 12, 13}] 296 # HP_G, Vj, g_j, Gj_deg = StruInforEntropy(G, partition) 297 298 def delt_Xij(Xi, Xj, G, weight=None): 299 Xij = Xi + Xj 300 sub_set = [Xi, Xj, list(set(Xij))] 301 degree = G.degree(weight=weight) 302 G_volume = sum(degree[index_node] for index_node in G.nodes) 303 Vij, gij = [], [] 304 for ind in range(len(sub_set)): 305 sub_degree = 0 306 for node in sub_set[ind]: 307 sub_degree += degree[node] 308 gj_c = nx.cut_size(G, sub_set[ind], weight=weight) 309 Vij.append(sub_degree) 310 gij.append(gj_c) 311 gij = np.array(gij) 312 Vij = np.array(Vij) 313 g_i, g_j, g_ij = gij[0], gij[1], gij[2] 314 V_i, V_j, V_ij = Vij[0], Vij[1], Vij[2] 315 log_Vij = Log2p(Vij, eps=1e-10) 316 delt_G_Pij = 1.0 / (G_volume) * ((V_i - g_i) * log_Vij[0] + 317 (V_j - g_j) * log_Vij[1] - 318 (V_ij - g_ij) * log_Vij[2] + 319 (g_i + g_j - g_ij) * np.log2(G_volume + 1e-10)) 320 return delt_G_Pij 321 322 def delt_RXij(Xi, Xj, G, weight=None): 323 Xij = Xi + Xj 324 sub_set = [Xi, Xj, list(set(Xij))] 325 # sub_set = [[0, 1], [2, 3], [0, 1, 2, 3]] 326 # n = G.number_of_nodes() 327 # m = G.number_of_edges() 328 degree = G.degree(weight=weight) 329 G_volume = sum(degree[index_node] for index_node in G.nodes) + 1e-10 330 Vij, gij = [], [] 331 for ind in range(len(sub_set)): 332 sub_degree = 0 333 for node in sub_set[ind]: 334 sub_degree += degree[node] 335 gj_c = nx.cut_size(G, sub_set[ind], weight=weight) 336 Vij.append(sub_degree) 337 gij.append(gj_c) 338 g_i, g_j, g_ij = gij[0], gij[1], gij[2] 339 V_i, V_j, V_ij = Vij[0], Vij[1], Vij[2] 340 # log_Vij = Log2p(Vij, eps=1e-10) 341 342 RP_i = -(V_i - g_i) / G_volume * np.log2(V_i / G_volume + 1e-10) 343 RP_j = -(V_j - g_j) / G_volume * np.log2(V_j / G_volume + 1e-10) 344 RP_ij = -(V_ij - g_ij) / G_volume * np.log2(V_ij / G_volume + 1e-10) 345 346 delt_G_RPij = RP_i + RP_j - RP_ij 347 348 return delt_G_RPij 349 350 def doWhile(G, NodeA, weight=None): 351 count = 0 352 L = len(NodeA) 353 for Xi in NodeA: 354 NodeB = NodeA.copy() 355 NodeB.remove(Xi) 356 for Xj in NodeB: 357 delt_ij = delt_Xij(Xi, Xj, G, weight=weight) # 函数 358 if delt_ij > 0: 359 return True 360 # if delt_ij < 0: 361 # count += 1 362 # if count - L * (L - 1) != 0: 363 # return True 364 return False 365 366 def doRWhile(G, NodeA, weight=None): 367 count = 0 368 L = len(NodeA) 369 for Xi in NodeA: 370 NodeB = NodeA.copy() 371 NodeB.remove(Xi) 372 for Xj in NodeB: 373 delt_ij = delt_RXij(Xi, Xj, G, weight=weight) # 函数 374 if delt_ij <= 0: 375 return True 376 # if delt_ij > 0: 377 # count += 1 378 # if count - L * (L - 1) != 0: 379 # return True 380 return False 381 382 def doWhile_js(row, col, data, NodeA): 383 count = 0 384 L = len(NodeA) 385 for Xi in NodeA: 386 NodeB = NodeA.copy() 387 NodeB.remove(Xi) 388 for Xj in NodeB: 389 delt_ij = deltDI_ij(row, col, data, ndq_a=Xi, ndq_b=Xj) # 函数 390 if delt_ij <= 0: 391 return True 392 # if delt_ij > 0: 393 # count += 1 394 # if count - L * (L - 1) != 0: 395 # return True 396 return False 397 398 ######################################算法主体min2DStruInforEntropyPartition -- 开始########################################### 399 def min2DStruInforEntropyPartition(G, weight=None): 400 # Input 算法主体 -- 开始 401 print("Partition by min2DHG ..........") 402 nodes = list(G.nodes()) 403 nodes.sort() # 节点编号升序排列 404 global NodeA 405 NodeA = [[node] for node in nodes] 406 print("Init-Input:", NodeA) # Input Data 407 doWhileFlg = True 408 NodeA.reverse() # 逆序 409 while doWhileFlg: 410 Xi = NodeA.pop() 411 Nj = NodeA.copy() 412 delt_max = 0 413 Xj_m = None 414 for Xj in Nj: 415 delt_ij = delt_Xij(Xi, Xj, G, weight=weight) # 函数 416 if delt_ij > 0 and delt_ij > delt_max: 417 Xj_m = Xj 418 delt_max = delt_ij 419 if Xj_m in Nj and Xj_m is not None: 420 Nj.remove(Xj_m) 421 Xij = Xi + Xj_m 422 Nj.insert(0, Xij) 423 # print('Xi:', Xi, '+ Xj:', Xj_m, '-->', Xij, ' delt_ij_HG:', delt_max) 424 elif Xj_m is None: 425 Nj.insert(0, Xi) # 首位值插入 426 NodeA = Nj 427 doWhileFlg = doWhile(G, NodeA, weight=weight) # 是否继续循环 428 # print(NodeA) 429 # print('Output:', NodeA) 430 sub_set = NodeA.copy() # Final Result 431 # Output: NodeA 算法主体 -- 结束 432 433 # sort 434 results = [] 435 for sb_result in sub_set: 436 sb_result.sort() 437 results.append(sb_result) 438 results.sort() 439 print('Output:', results) 440 return results 441 ######################################算法主体min2DStruInforEntropyPartition -- 结束########################################### 442 443 ######################################算法主体maxDIPartition -- 开始########################################### 444 def maxDIPartition(G, weight=None, pk_partion=None): 445 # Input 算法主体 -- 开始 446 print("Partition by maxDI ..........") 447 nodes = list(G.nodes()) 448 nodes.sort() # 节点编号升序排列 449 global NodeA 450 if pk_partion is None: 451 nodes = list(G.nodes()) 452 nodes.sort() # 节点编号升序排列 453 NodeA = [[node] for node in nodes] 454 else: 455 NodeA = pk_partion 456 print("Init-Input:", NodeA) # Input Data 457 doWhileFlg = True 458 NodeA.reverse() # 逆序 459 while doWhileFlg: 460 Xi = NodeA.pop() 461 Nj = NodeA.copy() 462 delt_min = 0 463 Xj_m = None 464 for Xj in Nj: 465 delt_ij = delt_RXij(Xi, Xj, G, weight=weight) # 函数 466 if delt_ij < 0 and delt_ij < delt_min: 467 Xj_m = Xj 468 delt_min = delt_ij 469 if Xj_m in Nj and Xj_m is not None: 470 Nj.remove(Xj_m) 471 Xij = Xi + Xj_m 472 Nj.insert(0, Xij) 473 # print('Xi:', Xi, '+ Xj:', Xj_m, '-->', Xij, ' delt_RXij:', delt_min) 474 elif Xj_m is None: 475 Nj.insert(0, Xi) # 首位值插入 476 NodeA = Nj 477 doWhileFlg = doRWhile(G, NodeA, weight=weight) # 是否继续循环 478 # print(NodeA) 479 # print('Output:', NodeA) 480 sub_set = NodeA.copy() # Final Result 481 # Output: NodeA 算法主体 -- 结束 482 483 # sort 484 results = [] 485 for sb_result in sub_set: 486 sb_result.sort() 487 results.append(sb_result) 488 results.sort() 489 print('Output:', results) 490 return results 491 ######################################算法主体maxDIPartition -- 结束########################################### 492 493 ######################################算法主体maxDI 优化 -- 开始########################################### 494 def maxDI(G, weight=None, pk_partion=None): 495 # Input 算法主体 -- 开始 496 print("Partition by maxDI ..........") 497 row, col, data = get_coo_matrix_from_G(G, weight=weight) 498 nodes = list(G.nodes()) 499 nodes.sort() # 节点编号升序排列 500 global NodeA 501 if pk_partion is None: 502 nodes = list(G.nodes()) 503 nodes.sort() # 节点编号升序排列 504 NodeA = [[node] for node in nodes] 505 else: 506 NodeA = pk_partion 507 print("Init-Input:", NodeA) # Input Data 508 doWhileFlg = True 509 NodeA.reverse() # 逆序 510 while doWhileFlg: 511 Xi = NodeA.pop() 512 Nj = NodeA.copy() 513 delt_min = 0 514 Xj_m = None 515 for Xj in Nj: 516 delt_ij = deltDI_ij(row, col, data, ndq_a=Xi, ndq_b=Xj) # 函数 517 if delt_ij < 0 and delt_ij < delt_min: 518 Xj_m = Xj 519 delt_min = delt_ij 520 if Xj_m in Nj and Xj_m is not None: 521 Nj.remove(Xj_m) 522 Xij = Xi + Xj_m 523 Nj.insert(0, Xij) 524 # print('Xi:', Xi, '+ Xj:', Xj_m, '-->', Xij, ' delt_RXij:', delt_min) 525 elif Xj_m is None: 526 Nj.insert(0, Xi) # 首位值插入 527 NodeA = Nj 528 doWhileFlg = doWhile_js(row, col, data, NodeA) # 是否继续循环 529 # print(NodeA) 530 # print('Output:', NodeA) 531 sub_set = NodeA.copy() # Final Result 532 # Output: NodeA 算法主体 -- 结束 533 534 # sort 535 results = [] 536 for sb_result in sub_set: 537 sb_result.sort() 538 results.append(sb_result) 539 results.sort() 540 print('Output:', results) 541 return results 542 ######################################算法主体maxDI 优化 -- 结束########################################### 543 544 ######################################算法主体maxDI 迭代优化-Parallel -- 开始########################################### 545 def iter_maxDI(G, iter_max=100, pk_partion=None, weight=None, n_jobs=4, verbose=0): 546 # iter_max = 100 547 # n_jobs = 4 548 row, col, data = get_coo_matrix_from_G(G, weight=weight) 549 global N 550 if pk_partion is None: 551 nodes = list(G.nodes()) 552 nodes.sort() # 节点编号升序排列 553 N = [[node] for node in nodes] 554 else: 555 N = pk_partion 556 out = Parallel(n_jobs=n_jobs, verbose=verbose)(delayed(parts_DI)(row, col, data, P) for P in partition_producer(N)) 557 # print('(iter:%d ---> DI:%.2f bits)' % (0, np.sum(out))) 558 DI = np.zeros(iter_max + 1) 559 DI[0] = float('%.3f' % np.sum(out)) 560 print('(iter:%d ---> DI:%.3f bits)' % (0, DI[0])) 561 for iter in range(iter_max): 562 ndi = N[0] 563 out = Parallel(n_jobs=n_jobs, verbose=verbose)( 564 delayed(deltDI_ij)(row, col, data, ndi, ndj) for ndi, ndj in producer(N)) 565 out_min = min(out) 566 if out_min < 0: 567 ndj = N[out.index(out_min)] 568 N.remove(ndj) 569 N.append(ndi + ndj) 570 elif ndi not in N: 571 N.append(ndi) 572 out = Parallel(n_jobs=n_jobs, verbose=verbose)( 573 delayed(parts_DI)(row, col, data, P) for P in partition_producer(N)) 574 DI[iter + 1] = float('%.3f' % np.sum(out)) 575 if (iter + 1) % 50 == 0: 576 print('(iter:%d ---> DI:%.3f bits)' % (iter+1, DI[iter+1])) 577 # if (iter + 1) >= 2000 and np.var(DI[-2000:-1], ddof=1) < 1e-10: # 计算样本方差 ( 计算时除以 N - 1 ) 578 # DI = DI[:iter + 2] 579 # break 580 581 # sort results 582 results = [] 583 for sb_result in N: 584 sb_result.sort() 585 results.append(sb_result) 586 results.sort() 587 588 return results, DI 589 ######################################算法主体maxDI 迭代优化-Parallel -- 开始########################################### 590 591 # get DI by Parallel 592 def get_DI_Parallel(G, partion=None, weight=None, n_jobs=4, verbose=0): 593 row, col, data = get_coo_matrix_from_G(G, weight=weight) 594 out = Parallel(n_jobs=n_jobs, verbose=verbose)( 595 delayed(parts_DI)(row, col, data, P) for P in partition_producer(partion)) 596 DI = float('%.3f' % np.sum(out)) 597 return DI 598 # get DI by maxDIPartition 599 def get_DI(G, weight=None): 600 print("G: number_of_nodes:{0}, number_of_edges:{1}".format(G.number_of_nodes(), G.number_of_edges())) 601 results = maxDIPartition(G, weight=weight) 602 twoHG, Vj, g_j, Gj_deg = StruInforEntropy(G, partition=results, weight=weight) 603 oneHG = get_oneStruInforEntropy(G, weight=weight) 604 DI = oneHG - twoHG 605 DI = float('%.3f' % DI) 606 return DI 607 608 # n, m = G.number_of_nodes(), G.number_of_edges() 609 # Eg_List = [(u, v, w['weight']) for (u, v, w) in G.edges(data=True)] 610 def create_weight_graph_txt_file(G, filename='InputGraph'): 611 file = open(filename + '.txt', mode='w') 612 str_number_of_nodes = '{0} '.format(G.number_of_nodes()) 613 file.write(str_number_of_nodes) 614 for (u, v, w) in G.edges(data=True): 615 str_edge = '{0} {1} {2} '.format(u, v, w['weight']) 616 file.write(str_edge) 617 file.close() 618 619 # Plot Graph 620 def show_graph(G, weight='weight', with_labels=False, save=False, filename='./graph.svg'): 621 # test: outer point 622 print("G: number_of_nodes:{0}, number_of_edges:{1}".format(G.number_of_nodes(), G.number_of_edges())) 623 # pos = nx.spring_layout(G) # set layout 624 pos = nx.kamada_kawai_layout(G) 625 # nx.draw(G, pos=pos, node_size=300, with_labels=with_labels, node_color='red') 626 nodecolor = G.degree(weight=weight) # 度数越大,节点越大,连接边颜色越深 627 nodecolor2 = pd.DataFrame(nodecolor) # 转化称矩阵形式 628 nodecolor3 = nodecolor2.iloc[:, 1] # 索引第二列 629 edgecolor = range(G.number_of_edges()) # 设置边权颜色 630 631 nx.draw(G, 632 pos, 633 with_labels=with_labels, 634 node_size=nodecolor3 * 6 * 10, 635 node_color=nodecolor3 * 5, 636 edge_color=edgecolor) 637 638 if save: 639 plt.savefig(filename, dpi=600, transparent=True) 640 plt.show() 641 642 # label_result 643 def label_result(nsamples, result): 644 y_result = np.zeros((nsamples,)) - 1 # -1 为噪声点 645 cls = 0 646 for p in result: 647 y_result[p] = cls 648 cls += 1 649 return y_result 650 651 # Decomposition 652 def XDecomposition(X, n_components=2): 653 from sklearn.decomposition import PCA 654 (m, n) = X.shape 655 if n_components >= n: 656 return X 657 else: 658 pca = PCA(n_components=n_components, svd_solver='full') 659 pca.fit(X) 660 X_trans = pca.transform(X) 661 # pca.explained_variance_ratio_ 662 # pca.singular_values_ 663 return X_trans 664 665 # Add node attributes 666 def set_node_attributes(G, X): 667 attr = {} 668 for node in G.nodes(data=False): 669 attr[node] = {'x_'+str(j): X[node, j] for j in range(X.shape[1])} 670 nx.set_node_attributes(G, attr) 671 return G 672 # Add part_nodes attributes 673 def set_part_node_attributes(G, nodelist, X): 674 attr = {} 675 for node in nodelist: 676 attr[node] = {'x_'+str(j): X[node, j] for j in range(X.shape[1])} 677 nx.set_node_attributes(G, attr) 678 return G 679 # update node_attributes 680 def update_node_attributes(G, X, node_new): 681 attr = {} 682 attr[node_new] = {'x_' + str(j): X[node_new, j] for j in range(X.shape[1])} 683 nx.set_node_attributes(G, attr) 684 return G 685 686 # query_GraphND_cKDTree 687 def query_GraphND_cKDTree(G, points, num_feature): 688 # X --> m x n; points --> k x n 689 # points = np.array([X, Y]).T 690 nodes = {'x_' + str(j): nx.get_node_attributes(G, 'x_' + str(j)) for j in range(num_feature)} 691 nodes_pd = pd.DataFrame(nodes) 692 data = nodes_pd[['x_'+str(j) for j in range(num_feature)]] 693 694 tree = cKDTree(data=data, compact_nodes=True, balanced_tree=True) 695 696 dist, idx = tree.query(points, k=1) 697 node = nodes_pd.iloc[idx].index 698 699 return node, dist 700 701 # get_poly_from_osm_circleline 702 def get_poly_from_osm_circleline(circleline_osmfile=r"../osm/beijing_car_seg_6ring road.osm", toepsg=2436):# toepsg == 3857; 2436 703 # 精确的北京六环道路 见 beijing_car_seg_6ring road.osm: (北京六环附近及往内的可驾驶道路网络(路网graph为连通图))https://www.cnblogs.com/jeshy/p/14763489.html 704 # beijing_car_seg_6ring road.osm as the input data 705 # root = et.parse(r"./beijing_car_seg_6ring road.osm").getroot() 706 root = et.parse(circleline_osmfile).getroot() 707 nodes = {} 708 for node in root.findall('node'): 709 nodes[int(node.attrib['id'])] = (float(node.attrib['lon']), float(node.attrib['lat'])) 710 edges = [] 711 for way in root.findall('way'): 712 element_nd = way.findall('nd') 713 if len(element_nd) > 2: 714 for i in range(len(element_nd) - 1): 715 node_s, node_e = int(element_nd[i].attrib['ref']), int(element_nd[i+1].attrib['ref']) 716 path = (node_s, node_e) 717 edges.append(path) 718 else: 719 node_s, node_e = int(element_nd[0].attrib['ref']), int(element_nd[1].attrib['ref']) 720 path = (node_s, node_e) 721 edges.append(path) 722 edge = edges[0] 723 E = [] 724 E.append(edge) 725 edges.remove(edge) 726 point_s, point_e = nodes[E[0][0]], nodes[E[0][1]] 727 Point_lists = [] 728 Point_lists.append(list(point_s)) 729 Point_lists.append(list(point_e)) 730 while len(edges) > 0: 731 (node_f_s, node_f_e) = E[-1] 732 for (node_n_s, node_n_e) in edges: 733 if node_f_e == node_n_s: 734 E.append((node_n_s, node_n_e)) 735 point_f_e = nodes[node_n_e] 736 Point_lists.append(list(point_f_e)) 737 # print((node_n_s, node_n_e)) 738 edges.remove((node_n_s, node_n_e)) 739 break 740 # Points.pop() 741 # print(E[0], '...', E[-2], E[-1]) 742 # print(Point_lists[0], '...', Point_lists[-2], Point_lists[-1]) 743 744 road_line_arr = np.array(Point_lists) # 转换成二维坐标表示 745 sixc_ring_poly = Polygon(road_line_arr) # Polygon 746 747 crs = {'init': 'epsg:4326'} 748 gpoly = gpd.GeoSeries(sixc_ring_poly, crs=crs) 749 750 if toepsg is not None: 751 gpoly = gpoly.to_crs(epsg=toepsg) 752 print('output gpoly.crs:', gpoly.crs) 753 754 # poly = gpoly[0] 755 # print('area(km*km):', poly.area / 1.0e6) 756 # print('length(km):', poly.length / 1.0e3) 757 758 return road_line_arr, sixc_ring_poly, gpoly 759 760 # X2GDF 761 def X2GDF(X, input_crs = "EPSG:2436", output_crs = "EPSG:4326", plot=True): 762 # input_crs = "EPSG:2436"# input_crs = "EPSG:4326" 763 # output_crs = "EPSG:4326"# output_crs = "EPSG:2436" 764 coords, IDs = [], [] 765 for i in range(X.shape[0]): 766 coords.append(Point(X[i, 0], X[i, 1]))# (X, Y) 767 IDs.append("%d" % i) 768 data = {'ID': IDs, 'geometry': coords} 769 gdf = gpd.GeoDataFrame(data, crs=input_crs) 770 # print(gdf.crs) # 查看数据对应的投影信息(坐标参考系) 771 if output_crs is not None: 772 gdf.to_crs(crs=output_crs)# (Lon, Lat) 773 774 if plot: 775 gdf.plot() 776 plt.show()#展示 777 778 return gdf 779 # GDF2X 780 def GDF2X(gdata, to_epsg=2436, plot=True): 781 print('input gdf crs:', gdata.crs) # 查看数据对应的投影信息(坐标参考系) ---> epsg == 4326 (WGS_84) 782 gdata = gdata.to_crs(epsg=to_epsg)# epsg == 2436 (X, Y), 4326 (lon, lat) 783 print('output X crs:', gdata.crs) 784 # print(gdata.columns.values)# 列名 785 # print(gdata.head()) # 查看前5行数据 786 if plot: 787 gdata.plot() 788 plt.show()#展示 789 geo = gdata.geometry.values 790 X0, Y0 = geo.x, geo.y 791 X = np.zeros(shape=(X0.shape[0], 2), dtype=float) 792 for i in range(X0.shape[0]): 793 X[i, 0], X[i, 1] = X0[i], Y0[i] 794 return X 795 796 # LonLat2XY 797 def LonLat2XY(X, input_crs = "EPSG:4326", output_crs = "EPSG:3857", shpfile_name = "point_shp.shp"): 798 # index = ['node_'+str(node) for node in range(X.shape[0])] 799 # columns = ['column_'+str(col) for col in range(X.shape[1])] 800 # df = pd.DataFrame(X, index=index, columns=columns) 801 coords, IDs = [], [] 802 for i in range(X.shape[0]): 803 coords.append(Point(X[i, 0], X[i, 1])) # (X, Y) 804 IDs.append("%d" % i) 805 806 data = {'ID': IDs, 'geometry': coords} 807 gdf = gpd.GeoDataFrame(data, crs=input_crs) 808 809 print('input crs', gdf.crs) # 查看数据对应的投影信息(坐标参考系) 810 if output_crs is not None: 811 gdf.to_crs(crs=output_crs) # (Lon, Lat) 812 813 print('output crs', gdf.crs) # 查看数据对应的投影信息(坐标参考系) output_crs = "EPSG:3857" or "EPSG:2436" 814 if shpfile_name is not None:# shpfile = "point_shap.shp" 815 gdf.to_file(filename=shpfile_name) 816 print('shpfile is saved') 817 818 geo = gdf.geometry.values 819 X0, Y0 = geo.x, geo.y 820 X = np.zeros(shape=(X0.shape[0], 2), dtype=float) 821 for i in range(X0.shape[0]): 822 X[i, 0], X[i, 1] = X0[i], Y0[i] 823 824 return X 825 826 # get_partion_result_outline 827 def get_partion_result_outline(X, partion_result, input_crs = "EPSG:2436", output_crs = None, shpfile = "partion_outline_shp.shp", save_shp = True, plot = True): 828 import alphashape 829 # input_crs = "EPSG:2436" 830 # output_crs = None 831 # shpfile = "partion_outline_shp.shp" 832 # save_shp = True 833 # plot = True 834 Polygs, Numbers, IDs = [], [], [] 835 for i in range(len(partion_result)): 836 X_uniques = np.unique(X[partion_result[i]], axis=0)# 去除重复行 837 if X_uniques.shape[0] > 2: 838 gdf_alpha_shape = alphashape.alphashape(X2GDF(X_uniques, input_crs=input_crs, output_crs=output_crs, plot=None)) 839 polyg = gdf_alpha_shape.geometry.values# GeoDataFrameArray 840 Polygs.append(polyg[0]) 841 Numbers.append(len(partion_result[i])) 842 IDs.append("%d" % i) 843 data = {'ID': IDs, 'num': Numbers, 'geometry': Polygs} 844 gdf = gpd.GeoDataFrame(data, crs=input_crs) 845 846 if output_crs is not None: 847 gdf.to_crs(crs=output_crs) 848 849 if save_shp: 850 gdf.to_file(shpfile) 851 852 if plot: 853 gdf.plot() 854 plt.show() # 展示 855 856 return gdf 857 858 # X2Shpfile 859 def X2Shpfile(X, shpfile="X_shp.shp", input_crs="EPSG:2436", output_crs="EPSG:4326"): 860 # input_crs = "EPSG:2436"# input_crs = "EPSG:4326" 861 # output_crs = "EPSG:4326"# output_crs = "EPSG:2436" 862 # shpfile = "X_shp.shp" 863 coords, IDs = [], [] 864 for i in range(X.shape[0]): 865 coords.append(Point(X[i, 0], X[i, 1])) # (X, Y) 866 IDs.append("%d" % i) 867 data = {'ID': IDs, 'geometry': coords} 868 gdf = gpd.GeoDataFrame(data, crs=input_crs) 869 # print(gdf.crs) # 查看数据对应的投影信息(坐标参考系) 870 if output_crs is not None: 871 gdf.to_crs(crs=output_crs) # (Lon, Lat) 872 gdf.to_file(shpfile) 873 # Edge2Shpfile 874 def Edge2Shpfile(G, X, shpfile="edge_shp.shp", data=True, input_crs="EPSG:2436", output_crs="EPSG:4326"): 875 # input_crs = "EPSG:2436" # input_crs = "EPSG:4326" 876 # output_crs = "EPSG:4326" # output_crs = "EPSG:2436" 877 # shpfile = "edge_shp.shp" 878 coords, weights, edgeIDs = [], [], [] 879 if data: 880 edges = [(u, v, w['weight']) for u, v, w in G.edges(data=data)] 881 else: 882 edges = [(u, v, 1.0) for u, v in G.edges(data=data)] 883 id = 0 884 for u, v, w in edges: 885 edgeIDs.append(id) 886 coords.append((([X[u, 0], X[u, 1]]), ([X[v, 0], X[v, 1]]))) 887 weights.append(w) 888 id += 1 889 data = {'edgeID': edgeIDs, 'weight': weights, 'geometry': MultiLineString(coords)} 890 gdf = gpd.GeoDataFrame(data, crs=input_crs) 891 # print(gdf.crs) # 查看数据对应的投影信息(坐标参考系) 892 if output_crs is not None: 893 gdf.to_crs(crs=output_crs) 894 gdf.to_file(shpfile) 895 896 # FixingGraph 897 def FixingGraph(G, X, merage_components=False): 898 # Add node attributes 899 G = set_node_attributes(G, X) 900 node_index = [nd for nd in G.nodes] 901 if G.number_of_nodes() < X.shape[0]: 902 print("Graph Fixing (Connecting the Isolated Points by distances)......... ") 903 # Fixed Graph 904 node_all_index = [nd for nd in range(X.shape[0])] 905 node_non_index = list(set(node_all_index) - set(node_index)) 906 for ndi in node_non_index: 907 ptq = X[ndi:ndi + 1, :] 908 indices, distances = query_GraphND_cKDTree(G, points=ptq, num_feature=X.shape[1]) 909 add_edge = [(ndi, indices[0], {'weight': 1.0 / (distances[0] + 1e-5)})] 910 G.add_edges_from(add_edge) 911 # update the new node attributes 912 G = update_node_attributes(G, X, node_new=ndi) 913 node_index.append(ndi) 914 print("G(Fixed): number_of_nodes:{0}, number_of_edges:{1}".format(G.number_of_nodes(), G.number_of_edges())) 915 # # onnected components in G 916 if merage_components: 917 connected_components = [list(c) for c in sorted(nx.connected_components(G), key=len, reverse=False)] 918 Len_C = len(connected_components) 919 print('Graph Components Numbers: ', Len_C) 920 print("Graph Components Connecting ......... ") 921 while Len_C >= 2: 922 first_components = connected_components[0] 923 # first_sub_graph 924 first_sub_graph = G.subgraph(first_components).copy() 925 926 # remove_nodes_from first_sub_graph for G 927 G.remove_nodes_from(first_components) 928 929 index_v = [nd for nd, data in first_sub_graph.nodes(data=True)] 930 points = X[index_v, :] 931 932 index_us, distances = query_GraphND_cKDTree(G, points=points, num_feature=X.shape[1]) 933 934 index_us, distances = list(index_us), list(distances) 935 min_index = distances.index(min(distances)) # 返回最小值 index 936 v, u, dis = index_v[min_index], index_us[min_index], distances[min_index] 937 bridge_edge = [(v, u, {'weight': 1.0 / (dis + 1e-5)})] 938 G.add_edges_from(bridge_edge) 939 940 # update the new node attributes 941 G = update_node_attributes(G, X, node_new=v) 942 943 # add the subgraph to G 944 sub_graph_edges = [edge for edge in first_sub_graph.edges(data=True)] 945 G.add_edges_from(sub_graph_edges) 946 nodelist = [node for node in G.nodes(data=False)] 947 G = set_part_node_attributes(G, nodelist, X) 948 949 connected_components = [list(c) for c in sorted(nx.connected_components(G), key=len, reverse=False)] 950 Len_C = len(connected_components) 951 print("G(Finally): number_of_nodes:{0}, number_of_edges:{1}".format(G.number_of_nodes(), G.number_of_edges())) 952 953 return G 954 955 # getKNNGraph 956 def getKNNGraph(X, n_neighbors=10, threshold=2.25, merage_components=False, save=True, shpfile=False): 957 # threshold = threshold ########### setup parameter ########### 958 if save: 959 output = open('X.pkl', 'wb') 960 pickle.dump(X, output) 961 output.close() 962 963 # from sklearn.preprocessing import StandardScaler 964 # X_trans = StandardScaler().fit_transform(X) 965 # output = open('trans_X.pkl', 'wb') 966 # pickle.dump(X_trans, output) 967 # output.close() 968 print("X is saved") 969 970 knn_graph = kneighbors_graph(X, n_neighbors=n_neighbors, mode='distance', include_self=False, n_jobs=-1) 971 # knn_graph = kneighbors_graph(X_trans, n_neighbors=n_neighbors, mode='distance', include_self=False, n_jobs=8) 972 graph = knn_graph 973 affinity = 0.5 * (graph + graph.T) 974 edges_list, node_index = [], [] 975 G = nx.Graph() 976 if hasattr(affinity, 'tocoo'): 977 A = affinity.tocoo() # csr_matrix --> coo 978 # edges_list = [(i, j, {'weight': 1.0/v}) for i, j, v in zip(A.row, A.col, A.data)] # coo matrix 979 for i, j, v in zip(A.row, A.col, A.data): 980 edge = (i, j, {'weight': 1.0 / (v + 1e-5)}) 981 edges_list.append(edge) 982 node_index.append(i) 983 node_index.append(j) 984 G.add_edges_from(edges_list) 985 node_index = list(set(node_index)) 986 print("knnG(all kneighbors ): number_of_nodes:{0}, number_of_edges:{1}".format(G.number_of_nodes(), G.number_of_edges())) 987 988 print("Graph Edge Removing ......... ") 989 for node in node_index: 990 neighbors = [nd for nd in nx.neighbors(G, node)] 991 if len(neighbors) > 1: 992 X_i = X[node, :] 993 dis_dict = {} 994 for nd in neighbors: 995 delt_X_k = X_i - X[nd, :] 996 dis = np.linalg.norm(delt_X_k) 997 dis_dict[nd] = dis 998 dis_order = sorted(dis_dict.items(), key=lambda x: x[1], reverse=False) # sort by ascending 999 (min_id, min_dis), (max_id, max_dis) = dis_order[0], dis_order[-1] 1000 if threshold >= min_dis and max_dis >= threshold: 1001 for nd in neighbors: 1002 if dis_dict[nd] > threshold: # remove 1003 rm_edge = [(node, nd)] 1004 G.remove_edges_from(rm_edge) 1005 elif threshold < min_dis: 1006 for nd in neighbors: # remove all 1007 rm_edge = [(node, nd)] 1008 G.remove_edges_from(rm_edge) 1009 add_edge = [(node, nd, {'weight': 1.0 / min_dis})] # add the small 1010 G.add_edges_from(add_edge) 1011 else: # threshold >= max_dis 1012 pass # save all 1013 print("knnG(edgermove): number_of_nodes:{0}, number_of_edges:{1}".format(G.number_of_nodes(), G.number_of_edges())) 1014 1015 # Add node attributes 1016 G = set_node_attributes(G, X) 1017 if G.number_of_nodes() < X.shape[0]: 1018 print("Graph Fixing ......... ") 1019 # Fixed Graph 1020 node_all_index = [nd for nd in range(X.shape[0])] 1021 node_non_index = list(set(node_all_index) - set(node_index)) 1022 for ndi in node_non_index: 1023 ptq = X[ndi:ndi+1, :] 1024 indices, distances = query_GraphND_cKDTree(G, points=ptq, num_feature=X.shape[1]) 1025 add_edge = [(ndi, indices[0], {'weight': 1.0 / (distances[0] + 1e-5)})] 1026 G.add_edges_from(add_edge) 1027 # update the new node attributes 1028 G = update_node_attributes(G, X, node_new=ndi) 1029 node_index.append(ndi) 1030 print("knnG(Fixed): number_of_nodes:{0}, number_of_edges:{1}".format(G.number_of_nodes(), G.number_of_edges())) 1031 # test 1032 # Edge2Shpfile(G, X_pca, shpfile="edge_shp.shp", data=True, input_crs="EPSG:2436", output_crs=None) 1033 # X2Shpfile(X_pca, shpfile="X_shp.shp", input_crs="EPSG:2436", output_crs=None) 1034 # print("Shpfile is saved") 1035 # # onnected components in G 1036 if merage_components: 1037 connected_components = [list(c) for c in sorted(nx.connected_components(G), key=len, reverse=False)] 1038 Len_C = len(connected_components) 1039 print('Graph Components Numbers: ', Len_C) 1040 print("Graph Components Connecting ......... ") 1041 while Len_C >= 2: 1042 first_components = connected_components[0] 1043 # first_sub_graph 1044 first_sub_graph = G.subgraph(first_components).copy() 1045 1046 # remove_nodes_from first_sub_graph for G 1047 G.remove_nodes_from(first_components) 1048 1049 index_v = [nd for nd, data in first_sub_graph.nodes(data=True)] 1050 points = X[index_v, :] 1051 1052 index_us, distances = query_GraphND_cKDTree(G, points=points, num_feature=X.shape[1]) 1053 1054 index_us, distances = list(index_us), list(distances) 1055 min_index = distances.index(min(distances))# 返回最小值 index 1056 v, u, dis = index_v[min_index], index_us[min_index], distances[min_index] 1057 bridge_edge = [(v, u, {'weight': 1.0 / (dis + 1e-5)})] 1058 G.add_edges_from(bridge_edge) 1059 1060 # update the new node attributes 1061 G = update_node_attributes(G, X, node_new=v) 1062 1063 # add the subgraph to G 1064 sub_graph_edges = [edge for edge in first_sub_graph.edges(data=True)] 1065 G.add_edges_from(sub_graph_edges) 1066 nodelist = [node for node in G.nodes(data=False)] 1067 G = set_part_node_attributes(G, nodelist, X) 1068 1069 connected_components = [list(c) for c in sorted(nx.connected_components(G), key=len, reverse=False)] 1070 Len_C = len(connected_components) 1071 print("knnG(Finally): number_of_nodes:{0}, number_of_edges:{1}".format(G.number_of_nodes(), G.number_of_edges())) 1072 1073 if save: 1074 output = open('knnG.pkl', 'wb') 1075 pickle.dump(G, output) 1076 output.close() 1077 print("knnG is saved") 1078 1079 if shpfile: 1080 # X Decomposition 1081 X_pca = XDecomposition(X, n_components=2) 1082 Edge2Shpfile(G, X_pca, shpfile="edge_shp.shp", data=True, input_crs="EPSG:2436", output_crs=None) 1083 X2Shpfile(X_pca, shpfile="X_shp.shp", input_crs="EPSG:2436", output_crs=None) 1084 print("Shpfile is saved") 1085 1086 return G 1087 # getRadiusGraph 1088 def getRadiusGraph(X, radius=2.25, merage_components=False, save=True, shpfile=False): 1089 # threshold = threshold ########### setup parameter ########### 1090 if save: 1091 output = open('X.pkl', 'wb') 1092 pickle.dump(X, output) 1093 output.close() 1094 # from sklearn.preprocessing import StandardScaler 1095 # X_trans = StandardScaler().fit_transform(X) 1096 # output = open('trans_X.pkl', 'wb') 1097 # pickle.dump(X_trans, output) 1098 # output.close() 1099 print("X is saved") 1100 1101 radius_graph = radius_neighbors_graph(X, radius=radius, mode='distance', include_self=False, n_jobs=-1) 1102 graph = radius_graph 1103 affinity = 0.5 * (graph + graph.T) 1104 edges_list, node_index = [], [] 1105 G = nx.Graph() 1106 if hasattr(affinity, 'tocoo'): 1107 A = affinity.tocoo() # csr_matrix --> coo 1108 # edges_list = [(i, j, {'weight': 1.0/v}) for i, j, v in zip(A.row, A.col, A.data)] # coo matrix 1109 for i, j, v in zip(A.row, A.col, A.data): 1110 edge = (i, j, {'weight': 1.0 / (v + 1e-5)}) 1111 edges_list.append(edge) 1112 node_index.append(i) 1113 node_index.append(j) 1114 G.add_edges_from(edges_list) 1115 node_index = list(set(node_index)) 1116 print("radiusG(all radius neighbors ): number_of_nodes:{0}, number_of_edges:{1}".format(G.number_of_nodes(), G.number_of_edges())) 1117 1118 # Add node attributes 1119 G = set_node_attributes(G, X) 1120 if G.number_of_nodes() < X.shape[0]: 1121 print("Graph Fixing ......... ") 1122 # Fixed Graph 1123 node_all_index = [nd for nd in range(X.shape[0])] 1124 node_non_index = list(set(node_all_index) - set(node_index)) 1125 for ndi in node_non_index: 1126 ptq = X[ndi:ndi+1, :] 1127 indices, distances = query_GraphND_cKDTree(G, points=ptq, num_feature=X.shape[1]) 1128 add_edge = [(ndi, indices[0], {'weight': 1.0 / (distances[0] + 1e-5)})] 1129 G.add_edges_from(add_edge) 1130 # update the new node attributes 1131 G = update_node_attributes(G, X, node_new=ndi) 1132 node_index.append(ndi) 1133 print("radiusG(Fixed): number_of_nodes:{0}, number_of_edges:{1}".format(G.number_of_nodes(), G.number_of_edges())) 1134 # Edge2Shpfile(G, X_pca, shpfile="edge_shp.shp", data=True, input_crs="EPSG:2436", output_crs=None) 1135 # X2Shpfile(X_pca, shpfile="X_shp.shp", input_crs="EPSG:2436", output_crs=None) 1136 # print("Shpfile is saved") 1137 1138 # # onnected components in G 1139 if merage_components: 1140 connected_components = [list(c) for c in sorted(nx.connected_components(G), key=len, reverse=False)] 1141 Len_C = len(connected_components) 1142 print('Graph Components Numbers: ', Len_C) 1143 print("Graph Components Connecting ......... ") 1144 while Len_C >= 2: 1145 first_components = connected_components[0] 1146 # first_sub_graph 1147 first_sub_graph = G.subgraph(first_components).copy() 1148 1149 # remove_nodes_from first_sub_graph for G 1150 G.remove_nodes_from(first_components) 1151 1152 index_v = [nd for nd, data in first_sub_graph.nodes(data=True)] 1153 points = X[index_v, :] 1154 1155 index_us, distances = query_GraphND_cKDTree(G, points=points, num_feature=X.shape[1]) 1156 1157 index_us, distances = list(index_us), list(distances) 1158 min_index = distances.index(min(distances))# 返回最小值 index 1159 v, u, dis = index_v[min_index], index_us[min_index], distances[min_index] 1160 bridge_edge = [(v, u, {'weight': 1.0 / (dis + 1e-5)})] 1161 G.add_edges_from(bridge_edge) 1162 1163 # update the new node attributes 1164 G = update_node_attributes(G, X, node_new=v) 1165 1166 # add the subgraph to G 1167 sub_graph_edges = [edge for edge in first_sub_graph.edges(data=True)] 1168 G.add_edges_from(sub_graph_edges) 1169 nodelist = [node for node in G.nodes(data=False)] 1170 G = set_part_node_attributes(G, nodelist, X) 1171 1172 connected_components = [list(c) for c in sorted(nx.connected_components(G), key=len, reverse=False)] 1173 Len_C = len(connected_components) 1174 print("radiusG(Finally): number_of_nodes:{0}, number_of_edges:{1}".format(G.number_of_nodes(), G.number_of_edges())) 1175 1176 if save: 1177 output = open('radiusG.pkl', 'wb') 1178 pickle.dump(G, output) 1179 output.close() 1180 print("radiusG is saved") 1181 1182 if shpfile: 1183 # X Decomposition 1184 X_pca = XDecomposition(X, n_components=2) 1185 Edge2Shpfile(G, X_pca, shpfile="edge_shp.shp", data=True, input_crs="EPSG:2436", output_crs=None) 1186 X2Shpfile(X_pca, shpfile="X_shp.shp", input_crs="EPSG:2436", output_crs=None) 1187 print("Shpfile is saved") 1188 1189 return G 1190 # getRBFKernelsGraph 1191 def getRBFKernelsGraph(X, gamma=1., threshold=5., merage_components=False, n_jobs=-1, shpfile=False): 1192 params = {} 1193 params['gama'] = gamma 1194 K = pairwise_kernels(X, metric='rbf', filter_params=True, n_jobs=n_jobs, **params) # A kernel matrix K 1195 # K.tocoo() 1196 Kcsr = sp.csr_matrix(K) 1197 K = Kcsr.tocoo() 1198 print('A kernel matrix K: ', K.shape) 1199 # K(x, y) = exp(-gamma ||x-y||^2) ----> gamma = sigma^-2 ; sigma^2 is the Gaussian kernel of variance. 1200 affinity = 0.5 * (K + K.T) 1201 edges_list, node_index = [], [] 1202 if hasattr(affinity, 'tocoo'): 1203 A = affinity.tocoo() 1204 # edges_list = [(i, j, {'weight': (v + 1e-5)}) for i, j, v in zip(A.row, A.col, A.data) if 1205 # v >= threshold and i < j] # coo matrix 1206 for i, j, v in zip(A.row, A.col, A.data): # coo matrix 1207 if v >= threshold and i < j: 1208 edges_list.append((i, j, {'weight': v})) 1209 node_index.append(i) 1210 node_index.append(j) 1211 else: 1212 A = affinity 1213 (m, _) = A.shape 1214 # edges_list = [(i, j, {'weight': (A[i, j] + 1e-5)}) for i in range(m) for j in range(m) if 1215 # A[i, j] >= threshold and i < j] 1216 for i in range(m): 1217 for j in range(m): 1218 if A[i, j] >= threshold and i < j: 1219 edges_list.append((i, j, {'weight': A[i, j]})) 1220 node_index.append(i) 1221 node_index.append(j) 1222 1223 G = nx.Graph() 1224 G.add_edges_from(edges_list) 1225 node_index = list(set(node_index)) 1226 print("RBFKernelsGraph: number_of_nodes:{0}, number_of_edges:{1}".format(G.number_of_nodes(), G.number_of_edges())) 1227 1228 # Add node attributes 1229 G = set_node_attributes(G, X) 1230 if G.number_of_nodes() < X.shape[0]: 1231 print("RBFKernelsGraph Fixing (Isolated Points) ......... ") 1232 # Fixed Graph 1233 node_all_index = [nd for nd in range(X.shape[0])] 1234 node_non_index = list(set(node_all_index) - set(node_index)) 1235 for ndi in node_non_index: 1236 ptq = X[ndi:ndi + 1, :] 1237 indices, distances = query_GraphND_cKDTree(G, points=ptq, num_feature=X.shape[1]) 1238 pty = X[indices[0]:indices[0] + 1, :] 1239 rbf = rbf_kernel(X=ptq, Y=pty, gamma=gamma) 1240 # add_edge = [(ndi, indices[0], {'weight': 1.0 / (distances[0] + 1e-5)})] 1241 # add_edge = [(ndi, indices[0], {'weight': rbf[0][0]})] 1242 w = np.sqrt(np.log(rbf[0][0] + 1e-5) / (-gamma)) / (distances[0] + 1e-5) 1243 add_edge = [(ndi, indices[0], {'weight': w})] 1244 G.add_edges_from(add_edge) 1245 # update the new node attributes 1246 G = update_node_attributes(G, X, node_new=ndi) 1247 node_index.append(ndi) 1248 print("RBFKernelsGraph(Fixed): number_of_nodes:{0}, number_of_edges:{1}".format(G.number_of_nodes(), 1249 G.number_of_edges())) 1250 # # onnected components in G 1251 if merage_components: 1252 connected_components = [list(c) for c in sorted(nx.connected_components(G), key=len, reverse=False)] 1253 Len_C = len(connected_components) 1254 print('RBFKernelsGraph Components Numbers: ', Len_C) 1255 print("RBFKernelsGraph Components Connecting ......... ") 1256 while Len_C >= 2: 1257 first_components = connected_components[0] 1258 # first_sub_graph 1259 first_sub_graph = G.subgraph(first_components).copy() 1260 1261 # remove_nodes_from first_sub_graph for G 1262 G.remove_nodes_from(first_components) 1263 1264 index_v = [nd for nd, data in first_sub_graph.nodes(data=True)] 1265 points = X[index_v, :] 1266 1267 index_us, distances = query_GraphND_cKDTree(G, points=points, num_feature=X.shape[1]) 1268 1269 index_us, distances = list(index_us), list(distances) 1270 min_index = distances.index(min(distances)) # 返回最小值 index 1271 v, u, dis = index_v[min_index], index_us[min_index], distances[min_index] 1272 1273 ptv, ptu = X[v:v + 1, :], X[u:u + 1, :] 1274 rbf = rbf_kernel(X=ptv, Y=ptu, gamma=gamma) 1275 w = np.sqrt(np.log(rbf[0][0] + 1e-5) / (-gamma)) / (dis + 1e-5) 1276 bridge_edge = [(v, u, {'weight': w})] 1277 # bridge_edge = [(v, u, {'weight': 1.0 / (dis + 1e-5)})] # only distance 1278 1279 # add bridge edge 1280 G.add_edges_from(bridge_edge) 1281 1282 # update the new node attributes 1283 G = update_node_attributes(G, X, node_new=v) 1284 1285 # add the subgraph to G 1286 sub_graph_edges = [edge for edge in first_sub_graph.edges(data=True)] 1287 G.add_edges_from(sub_graph_edges) 1288 nodelist = [node for node in G.nodes(data=False)] 1289 G = set_part_node_attributes(G, nodelist, X) 1290 1291 connected_components = [list(c) for c in sorted(nx.connected_components(G), key=len, reverse=False)] 1292 Len_C = len(connected_components) 1293 print("RBFKernelsGraph(Finally): number_of_nodes:{0}, number_of_edges:{1}".format(G.number_of_nodes(), 1294 G.number_of_edges())) 1295 1296 if shpfile: 1297 X_pca = XDecomposition(X, n_components=2) 1298 if X_pca.shape[1] <= X.shape[1]: 1299 Edge2Shpfile(G, X_pca, shpfile="edge_shp.shp", data=True, input_crs="EPSG:2436", output_crs=None) 1300 X2Shpfile(X_pca, shpfile="X_shp.shp", input_crs="EPSG:2436", output_crs=None) 1301 print("Shpfile is saved") 1302 1303 return G 1304 1305 # Priori Knowledge 1 1306 def get_pk_MiniBatchKMeans(X, nodes, n_clusters=2, init_size=2, batch_size=500, n_init=10, max_no_improvement=10, verbose=0): 1307 # # # # # # # # # # # # # # Priori Knowledges # # # # # # # # # # # # # # # 1308 from sklearn.cluster import MiniBatchKMeans 1309 from sklearn import metrics 1310 # Priori Knowledge 1 1311 # n_clusters = 2542 1312 mbkm = MiniBatchKMeans(init='k-means++', n_clusters=n_clusters, 1313 batch_size=batch_size, n_init=n_init, 1314 init_size=init_size, 1315 max_no_improvement=max_no_improvement, verbose=verbose).fit(X) 1316 labels_ = mbkm.labels_ 1317 print("X -> SihCoe score: %0.3f" % metrics.silhouette_score(X, labels_)) 1318 print("X -> CN score: %0.3f" % metrics.calinski_harabasz_score(X, labels_)) 1319 pk_partion = [] 1320 if -1 in labels_: 1321 index = np.where(labels_ == -1)[0] 1322 pk_p = nodes[index].tolist() 1323 for pk in pk_p: 1324 pk_partion.append([pk]) 1325 n_clusters = len(set(labels_)) - 1 1326 # print('n_clusters', n_clusters) 1327 for lab in range(0, n_clusters, 1): 1328 index = np.where(labels_ == lab)[0] 1329 pk_p = nodes[index].tolist() 1330 pk_partion.append(pk_p) 1331 else: 1332 n_clusters = len(set(labels_)) 1333 for lab in range(0, n_clusters, 1): 1334 index = np.where(labels_ == lab)[0] 1335 pk_p = nodes[index].tolist() 1336 pk_partion.append(pk_p) 1337 # sort 1338 results = [] 1339 for sb_result in pk_partion: 1340 sb_result.sort() 1341 results.append(sb_result) 1342 results.sort() 1343 pk_partion = results 1344 1345 output = open('mbkm_pk_partion.pkl', 'wb') 1346 pickle.dump(pk_partion, output) 1347 output.close() 1348 1349 return pk_partion 1350 # Priori Knowledge 2 1351 def get_pk_DBSCAN(X, nodes, eps=0.02, min_samples=25): 1352 # Priori Knowledge 2 1353 from sklearn.cluster import DBSCAN 1354 from sklearn import metrics 1355 db = DBSCAN(eps=eps, min_samples=min_samples).fit(X) 1356 labels_ = db.labels_ 1357 print("X -> SC score: %0.3f" % metrics.silhouette_score(X, labels_)) 1358 print("X -> CN score: %0.3f" % metrics.calinski_harabasz_score(X, labels_)) 1359 pk_partion = [] 1360 if -1 in labels_: 1361 index = np.where(labels_ == -1)[0] 1362 pk_p = nodes[index].tolist() 1363 for pk in pk_p: 1364 pk_partion.append([pk]) 1365 n_clusters = len(set(labels_)) - 1 1366 for lab in range(0, n_clusters, 1): 1367 index = np.where(labels_ == lab)[0] 1368 pk_p = nodes[index].tolist() 1369 pk_partion.append(pk_p) 1370 else: 1371 n_clusters = len(set(labels_)) 1372 print('n_clusters', n_clusters) 1373 for lab in range(0, n_clusters, 1): 1374 index = np.where(labels_ == lab)[0] 1375 pk_p = nodes[index].tolist() 1376 pk_partion.append(pk_p) 1377 # sort 1378 results = [] 1379 for sb_result in pk_partion: 1380 sb_result.sort() 1381 results.append(sb_result) 1382 results.sort() 1383 pk_partion = results 1384 # print(pk_partion) 1385 # print(len(pk_partion)) 1386 1387 output = open('db_pk_partion.pkl', 'wb') 1388 pickle.dump(pk_partion, output) 1389 output.close() 1390 1391 return pk_partion 1392 1393 # get_X_fromSHP 1394 def get_X_fromSHP(filename=r'./park/BJ_park_m.shp', epsg4326_srid=2436, plot=True): 1395 gdata = gpd.read_file(filename=filename, bbox=None, mask=None, rows=None)#读取磁盘上的矢量文件 1396 # gdata = gpd.read_file(filename=r'CUsersjeshyDocumentsArcGISJ50.gdb', layer='BOUA')#读取gdb中的矢量数据 1397 print('Input geodata crs:', gdata.crs) # 查看数据对应的投影信息(坐标参考系) ---> epsg == 4326 (WGS_84) 1398 gdata = gdata.to_crs(epsg=epsg4326_srid)# epsg == 2436 (X, Y) 1399 print('Output geodata crs:', gdata.crs) 1400 print('Column names', gdata.columns.values)# 列名 1401 # print(gdata.head()) # 查看前5行数据 1402 if plot: 1403 gdata.plot() 1404 plt.show()#展示 1405 1406 geo = gdata.geometry.values 1407 X0, Y0 = geo.x, geo.y 1408 X = np.zeros(shape=(X0.shape[0], 2), dtype=float) 1409 for i in range(X0.shape[0]): 1410 X[i, 0], X[i, 1] = X0[i], Y0[i] 1411 1412 print('n_samples:', X0.shape[0]) 1413 output = open('X.pkl', 'wb') 1414 pickle.dump(X, output) 1415 output.close() 1416 print('X.pkl is saved') 1417 1418 from sklearn.preprocessing import StandardScaler 1419 X_trans = StandardScaler().fit_transform(X) 1420 output = open('trans_X.pkl', 'wb') 1421 pickle.dump(X_trans, output) 1422 output.close() 1423 print('trans_X.pkl is saved') 1424 1425 return X 1426 # get_G_X_formOSM 1427 def get_G_X_formOSM(osmfile=r'./osm/bj_six_ring.osm', simplify=True, gexf_save=True, show_graph=False): 1428 from networkx import Graph 1429 from osmnx import graph_from_xml, plot_graph, settings, config 1430 # settings and config 1431 utn = settings.useful_tags_node 1432 oxna = settings.osm_xml_node_attrs 1433 oxnt = settings.osm_xml_node_tags 1434 utw = settings.useful_tags_way 1435 oxwa = settings.osm_xml_way_attrs 1436 oxwt = settings.osm_xml_way_tags 1437 utn = list(set(utn + oxna + oxnt)) 1438 utw = list(set(utw + oxwa + oxwt)) 1439 crs = settings.default_crs 1440 config(all_oneway=True, useful_tags_node=utn, useful_tags_way=utw, default_crs=crs) 1441 1442 root = et.parse(osmfile).getroot() 1443 nodes_dict = {} 1444 for node in root.findall('node'): 1445 nodes_dict[int(node.attrib['id'])] = (float(node.attrib['lon']), float(node.attrib['lat'])) 1446 1447 M = graph_from_xml(osmfile, simplify=simplify) 1448 # print('G: number_of_nodes:', M.number_of_nodes(), 'number_of_edges:', M.number_of_edges()) 1449 1450 # plot_graph 1451 if show_graph: 1452 plot_graph(M, 1453 figsize=(16, 16), 1454 bgcolor=None, 1455 node_color="#999999", node_size=15, node_alpha=None, node_edgecolor="none", 1456 edge_color="#999999", edge_linewidth=1, edge_alpha=None, 1457 dpi=600, 1458 save=True, filepath='./osm.png') 1459 1460 # Convert M to Graph G 1461 G = nx.Graph() 1462 G.add_edges_from(Graph(M).edges()) 1463 print("G: number_of_nodes:{0}, number_of_edges:{1}".format(G.number_of_nodes(), G.number_of_edges())) 1464 1465 # write_gexf 1466 if gexf_save: 1467 nx.write_gexf(G, 'osm.gexf') 1468 1469 # relabel node id 1470 mapping, index, X = {}, 0, [] 1471 for node in G.nodes: 1472 mapping[node] = index 1473 lon, lat = nodes_dict[node][0], nodes_dict[node][1] 1474 X.append(np.array([lon, lat], dtype=float)) 1475 index += 1 1476 X = np.array(X, dtype=float) 1477 G = nx.relabel_nodes(G, mapping) 1478 1479 return G, X 1480 1481 def get_initial_partition(pk_partion): 1482 initial_partition = {nd: clus for clus in range(len(pk_partion)) for nd in pk_partion[clus]} 1483 return initial_partition 1484 def findPrioriKnowledges(G, initial_partition=None, edge_data_flg=False): 1485 import infomap 1486 infomapX = infomap.Infomap("--two-level") 1487 # print("Building Infomap network from a NetworkX graph...") 1488 1489 if edge_data_flg: 1490 for v, u, w in G.edges(data=edge_data_flg): 1491 e = (v, u, w['weight']) 1492 infomapX.addLink(*e) 1493 else: 1494 for e in G.edges(data=edge_data_flg): 1495 infomapX.addLink(*e) 1496 1497 # print("Find communities with Infomap...") 1498 infomapX.run(initial_partition=initial_partition, silent=True) 1499 # print("Found {} modules with codelength: {}".format(infomapX.numTopModules(), infomapX.codelength)) 1500 communities = {} 1501 for node in infomapX.iterLeafNodes(): 1502 communities[node.physicalId] = node.moduleIndex() 1503 nx.set_node_attributes(G, values=communities, name='community') 1504 return infomapX.numTopModules(), communities 1505 # color map from http://colorbrewer2.org/ 1506 def drawGraph(G): 1507 import matplotlib.colors as colors 1508 # position map 1509 # pos = nx.spring_layout(G) 1510 pos = nx.kamada_kawai_layout(G) 1511 # community ids 1512 communities = [v for k, v in nx.get_node_attributes(G, 'community').items()] 1513 numCommunities = max(communities) + 1 1514 # color map from http://colorbrewer2.org/ 1515 cmapLight = colors.ListedColormap(['#8dd3c7','#ffffb3','#bebada','#fb8072','#80b1d3','#fdb462','#b3de69','#fccde5','#d9d9d9','#bc80bd','#ccebc5','#ffed6f'], 'indexed', 1516 numCommunities) 1517 cmapDark = colors.ListedColormap(['#a6cee3','#1f78b4','#b2df8a','#33a02c','#fb9a99','#e31a1c','#fdbf6f','#ff7f00','#cab2d6','#6a3d9a','#ffff99','#b15928'], 'indexed', numCommunities) 1518 # Draw edges 1519 nx.draw_networkx_edges(G, pos) 1520 # Draw nodes 1521 nodeCollection = nx.draw_networkx_nodes(G, 1522 pos=pos, 1523 node_color=communities, 1524 cmap=cmapLight) 1525 # Set node border color to the darker shade 1526 darkColors = [cmapDark(v) for v in communities] 1527 nodeCollection.set_edgecolor(darkColors) 1528 # Draw node labels 1529 for n in G.nodes(): 1530 plt.annotate(n, 1531 xy=pos[n], 1532 textcoords='offset points', 1533 horizontalalignment='center', 1534 verticalalignment='center', 1535 xytext=[0, 0], 1536 color=cmapDark(communities[n])) 1537 plt.axis('off') 1538 # plt.savefig("karate.png") 1539 plt.show() 1540 # Priori Knowledge 3 1541 def get_PKResult(G, initial_partition=None, gshow=False, edge_data_flg=False): 1542 # print("Partition by Infomap ..........") 1543 numModules, pks = findPrioriKnowledges(G, initial_partition=initial_partition, edge_data_flg=edge_data_flg) 1544 if gshow: 1545 drawGraph(G) 1546 list_values = [val for val in pks.values()] 1547 list_nodes = [node for node in pks.keys()] 1548 print('pk sortting .......') 1549 result = [] 1550 for ndpa in range(numModules): 1551 nodes_part_index = np.argwhere(np.array(list_values) == ndpa).ravel() 1552 nodes_part = list(np.array(list_nodes)[nodes_part_index]) 1553 nodes_part.sort() 1554 result.append(nodes_part) 1555 result.sort() 1556 # print("pk size:", len(result)) 1557 # print("pk result:", result) 1558 1559 # output = open('info_pk_partion.pkl', 'wb') 1560 # pickle.dump(result, output) 1561 # output.close() 1562 1563 return result 1564 1565 1566 # MaxDIClustering Mian Class 1567 class MaxDIClustering(): 1568 def __init__(self, affinity='radius', 1569 n_neighbors=10, # getKNNGraph 1570 threshold=2.25, # getKNNGraph, getRBFKernelsGraph 1571 radius=2.25, # getRadiusGraph 1572 gamma=0.25, 1573 # getRBFKernelsGraph # K(x, y) = exp(-gamma ||x-y||^2) ----> gamma = (2sigma)^-2 ; sigma^2 is the Gaussian kernel of variance. 1574 merage_components=True, # getKNNGraph, getRadiusGraph, getRBFKernelsGraph 1575 pk='1', # -- PK 1576 n_clusters=2542, init_size=2542, # get_pk_MiniBatchKMeans -- PK 1577 eps=1000, min_samples=50, # get_pk_DBSCAN -- PK 1578 n_jobs=None): 1579 self.affinity = affinity 1580 self.radius = radius 1581 self.n_neighbors = n_neighbors 1582 self.threshold = threshold 1583 self.gamma = gamma # K(x, y) = exp(-gamma ||x-y||^2) ----> gamma = (2sigma)^-2 ; sigma^2 is the Gaussian kernel of variance. 1584 self.merage_components = merage_components 1585 self.n_clusters = n_clusters, 1586 self.init_size = init_size, 1587 self.eps = eps 1588 self.min_samples = min_samples 1589 self.pk = pk 1590 self.n_jobs = n_jobs 1591 1592 def fit(self, X): 1593 if self.affinity == 'radius': 1594 self.G = getRadiusGraph(X, radius=self.radius, merage_components=self.merage_components, save=False, 1595 shpfile=False) 1596 elif self.affinity == 'knn': 1597 self.G = getKNNGraph(X, n_neighbors=self.n_neighbors, threshold=self.threshold, 1598 merage_components=self.merage_components, save=False, shpfile=False) 1599 elif self.affinity == 'rbf': # RBFKernelsGraph # K(x, y) = exp(-gamma ||x-y||^2) ----> gamma = (2sigma)^-2 ; sigma^2 is the Gaussian kernel of variance. 1600 self.G = getRBFKernelsGraph(X, gamma=self.gamma, threshold=self.threshold, 1601 merage_components=self.merage_components, n_jobs=self.n_jobs, shpfile=False) 1602 else: 1603 raise ValueError("Unknown Graph Type %r" % self.affinity) 1604 1605 self.nodes = np.array([nd for nd in self.G.nodes], dtype=int) 1606 1607 # Priori Knowledge 1 1608 if self.pk == '1': 1609 pk_partion_hat = get_pk_MiniBatchKMeans(X, nodes=self.nodes, n_clusters=self.n_clusters, 1610 init_size=self.init_size) 1611 # pk_partion_hat = get_PKResult(self.G, initial_partition=get_initial_partition(pk_partion_hat), gshow=False, 1612 # edge_data_flg=True) 1613 self.pk_DI_ = get_DI_Parallel(self.G, partion=pk_partion_hat, weight='weight', n_jobs=self.n_jobs, 1614 verbose=0) 1615 # Priori Knowledge 2 1616 elif self.pk == '2': 1617 pk_partion_hat = get_pk_DBSCAN(X_trans=X, nodes=self.nodes, eps=self.eps, min_samples=self.min_samples) 1618 # pk_partion_hat = get_PKResult(self.G, initial_partition=get_initial_partition(pk_partion_hat), gshow=False, 1619 # edge_data_flg=True) 1620 self.pk_DI_ = get_DI_Parallel(self.G, partion=pk_partion_hat, weight='weight', n_jobs=self.n_jobs, 1621 verbose=0) 1622 # Priori Knowledge 3 1623 elif self.pk == '3': 1624 pk_partion_hat = get_PKResult(self.G, initial_partition=None, gshow=False, edge_data_flg=True) 1625 self.pk_DI_ = get_DI_Parallel(self.G, partion=pk_partion_hat, weight='weight', n_jobs=self.n_jobs, 1626 verbose=0) 1627 # None Priori Knowledge 1628 else: 1629 pk_partion_hat = None 1630 1631 self.OSIE_ = get_oneStruInforEntropy(self.G, weight='weight') 1632 self.OSIE_ = float('%.3f' % self.OSIE_) 1633 1634 self.results_, self.DIs_ = iter_maxDI(self.G, iter_max=100, pk_partion=pk_partion_hat, weight='weight', 1635 n_jobs=self.n_jobs, verbose=0) 1636 self.DI_ = self.DIs_[-1] 1637 1638 self.labels_ = label_result(nsamples=X.shape[0], result=self.results_).astype(int) 1639 1640 self.DI_rate_ = self.DI_ / self.OSIE_ 1641 1642 from sklearn.metrics import silhouette_score, calinski_harabasz_score 1643 self.si_score_ = silhouette_score(X, self.labels_, metric='euclidean') 1644 self.ch_score_ = calinski_harabasz_score(X, self.labels_) 1645 1646 return self 1647 1648 1649 # # # # # # # # # # # # # # # test and Demonstration # # # # # # # # # # # # # # # # 1650 # test cKDTree and pairwise_kernels Graph 1651 def test(): 1652 1653 # test 1654 output = open('park_X.pkl', 'rb') 1655 X = pickle.load(output) 1656 output.close() 1657 output = open('busstop_X.pkl', 'rb') 1658 X = pickle.load(output) 1659 output.close() 1660 1661 # m, n = X.shape 1662 1663 # show 1664 print(X.shape)# (42161, 2) 1665 print(X[[0, 1, 2]])# [[ 451389.26206748 4425262.84838121] .... ] 1666 1667 # cKDTree 1668 tree = cKDTree(data=X, leafsize=8, compact_nodes=True, balanced_tree=True) 1669 X_query = X[[0, 1, 2]] 1670 dis, index = tree.query(x=X_query, k=1, n_jobs=-1) 1671 X_query_out = X[index] 1672 1673 print(dis, index, sep=' ')# [0. 0. 0.] [0 1 6931] 1674 print(X_query)# [[ 451389.26206748 4425262.84838121] ... ] 1675 print(X_query_out)# [[ 451389.26206748 4425262.84838121] ... ] 1676 1677 M = 25000# 42161 --> size is too large. 1678 threshold = 0.998 1679 1680 params = {} 1681 params['gama'] = 1 1682 K = pairwise_kernels(X[:M, :], metric='rbf', filter_params=True, n_jobs=-1, **params)# A kernel matrix K 1683 1684 # K.tocoo() 1685 Kcsr = sp.csr_matrix(K) 1686 K = Kcsr.tocoo() 1687 print('A kernel matrix K: ', K.shape) 1688 # K(x, y) = exp(-gamma ||x-y||^2) ----> gamma = (2sigma)^-2 ; sigma^2 is the Gaussian kernel of variance. 1689 1690 affinity = 0.5 * (K + K.T) 1691 edges_list, node_index = [], [] 1692 if hasattr(affinity, 'tocoo'): 1693 A = affinity.tocoo() 1694 # edges_list = [(i, j, {'weight': (v + 1e-5)}) for i, j, v in zip(A.row, A.col, A.data) if 1695 # v >= threshold and i < j] # coo matrix 1696 for i, j, v in zip(A.row, A.col, A.data): # coo matrix 1697 if v >= threshold and i < j: 1698 edges_list.append((i, j, {'weight': v})) 1699 node_index.append(i) 1700 node_index.append(j) 1701 # else: 1702 # A = affinity 1703 # (m, _) = A.shape 1704 # # edges_list = [(i, j, {'weight': (A[i, j] + 1e-5)}) for i in range(m) for j in range(m) if 1705 # # A[i, j] >= threshold and i < j] 1706 # for i in range(m): 1707 # for j in range(m): 1708 # if A[i, j] >= threshold and i < j: 1709 # edges_list.append((i, j, {'weight': A[i, j]})) 1710 # node_index.append(i) 1711 # node_index.append(j) 1712 1713 G = nx.Graph() 1714 G.add_edges_from(edges_list) 1715 # node_index = list(set(node_index)) 1716 print("KernelsGraph: number_of_nodes:{0}, number_of_edges:{1}".format(G.number_of_nodes(), G.number_of_edges())) 1717 1718 # FixingGraph 1719 G = FixingGraph(G, X, merage_components=True) 1720 1721 # save 1722 output = open('busstop_KernelsGraph_part.pkl', 'wb') 1723 pickle.dump(G, output) 1724 output.close() 1725 # rbf_Clustering by MaxDIClustering 1726 def rbf_Clustering(): 1727 # Load the geodata 1728 output = open('park_X.pkl', 'rb')# park_X = get_X_fromSHP(filename=r'./park/BJ_park_m.shp', epsg4326_srid=2436, plot=True) 1729 park_X = pickle.load(output) 1730 output.close() 1731 1732 output = open('busstop_X.pkl', 'rb')# busstop_X = get_X_fromSHP(filename=r'./busstop/BeijingBusStops_84.shp', epsg4326_srid=2436, plot=True) 1733 busstop_X = pickle.load(output)# (42161, 2) # Maybe MemoryError --> A RBF kernel matrix K: (42161, 42161)! 1734 output.close() 1735 1736 output = open('./busstop_RBFGraph.pkl', 'rb') 1737 RBFGraph = pickle.load(output) 1738 output.close() 1739 1740 print('------------------------------Extract Partion Outlines----------------------------------') 1741 # Select Anyone Graph Extracted Method: getRadiusGraph、getKNNGraph、getRBFKernelsGraph 1742 G = getRadiusGraph(X=park_X, radius=500, merage_components=True, save=False, shpfile=False) 1743 partion_result = get_PKResult(G, initial_partition=None, gshow=False, edge_data_flg=True) 1744 outline_gdf = get_partion_result_outline(X=park_X, partion_result=partion_result, input_crs="EPSG:2436", 1745 output_crs=None, 1746 shpfile="partion_outline_shp.shp", save_shp=True, plot=False) 1747 output = open('Extract_Partion_Outlines_gdf.pkl', 'wb') 1748 pickle.dump(outline_gdf, output) 1749 output.close() 1750 print('------------------------------Extract Partion Outlines End----------------------------------') 1751 1752 print('------------------------------RBFKernelsGraph----------------------------------') 1753 print('park_X......') 1754 X = park_X 1755 # Clustering by MaxDIClustering 1756 max_di_clus = MaxDIClustering(affinity='rbf', 1757 threshold=0.998, # getKNNGraph, getRBFKernelsGraph 1758 gamma=1.0, 1759 # getRBFKernelsGraph # K(x, y) = exp(-gamma ||x-y||^2) ----> gamma = (2sigma)^-2 ; sigma^2 is the Gaussian kernel of variance. 1760 merage_components=True, # getKNNGraph, getRadiusGraph, getRBFKernelsGraph 1761 pk='3', # -- PK 1762 n_jobs=4).fit(X) 1763 output = open('park_X_max_di_clus_rbf.pkl', 'wb') 1764 pickle.dump(max_di_clus, output) 1765 output.close() 1766 print('DI_', max_di_clus.DI_) 1767 print('OSIE_', max_di_clus.OSIE_) 1768 print('DI_rate_', max_di_clus.DI_rate_) 1769 print('si_score_', max_di_clus.si_score_) 1770 # DI_ 6.775 1771 # OSIE_ 9.205 1772 # DI_rate_ 0.736 1773 # si_score_ 0.299 1774 1775 print('busstop_X......') 1776 X = busstop_X # (42161, 2) # MemoryError: Unable to allocate 13.2 GiB for an array with shape (42161, 42161) and data type float64 1777 # # X clip by beijing-6ring-road.osm # # 1778 X_gdf = X2GDF(X, input_crs="EPSG:2436", output_crs=None, plot=None) 1779 # _, __, gpoly_mask = get_poly_from_osm_circleline(circleline_osmfile=r"../osm/beijing_car_seg_6ring road.osm", toepsg=2436) # (23946, 2) # MemoryError too 1780 _, __, gpoly_mask = get_poly_from_osm_circleline(circleline_osmfile=r"../osm/beijing_5ring.osm", toepsg=2436) 1781 gdata = gpd.clip(gdf=X_gdf, mask=gpoly_mask, keep_geom_type=True) 1782 X = GDF2X(gdata, to_epsg=2436, plot=False) 1783 # Clustering by MaxDIClustering 1784 max_di_clus = MaxDIClustering(affinity='rbf', 1785 threshold=0.998, # getKNNGraph, getRBFKernelsGraph 1786 gamma=1.0, 1787 # getRBFKernelsGraph # K(x, y) = exp(-gamma ||x-y||^2) ----> gamma = sigma^-2 ; sigma^2 is the Gaussian kernel of variance. 1788 merage_components=True, # getKNNGraph, getRadiusGraph, getRBFKernelsGraph 1789 pk='3', # -- PK 1790 n_jobs=4).fit(X) 1791 output = open('busstop_X_max_di_clus_rbf.pkl', 'wb') 1792 pickle.dump(max_di_clus, output) 1793 output.close() 1794 print('DI_', max_di_clus.DI_) 1795 print('OSIE_', max_di_clus.OSIE_) 1796 print('DI_rate_', max_di_clus.DI_rate_) 1797 print('si_score_', max_di_clus.si_score_) 1798 # A kernel matrix K: (13318, 13318) 1799 # RBFKernelsGraph: number_of_nodes:8278, number_of_edges:15797 1800 # RBFKernelsGraph Fixing (Isolated Points) ......... 1801 # RBFKernelsGraph(Fixed): number_of_nodes:13318, number_of_edges:20837 1802 # RBFKernelsGraph Components Numbers: 2271 1803 # RBFKernelsGraph Components Connecting ......... 1804 # RBFKernelsGraph(Finally): number_of_nodes:13318, number_of_edges:23107 1805 # DI_ 7.862 1806 # OSIE_ 9.827 1807 # DI_rate_ 0.800 1808 # si_score_ 0.694 1809 1810 G = RBFGraph # 提前使用更高配置计算机计算得到的 RBF-Graph 1811 X = busstop_X # (42161, 2) 1812 # FixingGraph 1813 G = FixingGraph(G, X, merage_components=True) 1814 1815 pk_partion_hat = get_PKResult(G, initial_partition=None, gshow=False, edge_data_flg=True) 1816 OSIE_ = float('%.3f' % get_oneStruInforEntropy(G, weight='weight')) 1817 1818 # pk_DI_ = get_DI_Parallel(G, partion=pk_partion_hat, weight='weight', n_jobs=-1, verbose=0) 1819 results_, DI_ = iter_maxDI(G, iter_max=100, pk_partion=pk_partion_hat, weight='weight', n_jobs=-1, verbose=0) 1820 1821 DI_ = DI_[-1] 1822 labels_ = label_result(nsamples=X.shape[0], result=results_).astype(int) 1823 DI_rate_ = DI_ / OSIE_ 1824 from sklearn.metrics import silhouette_score, calinski_harabasz_score 1825 si_score_ = silhouette_score(X, labels_, metric='euclidean') 1826 ch_score_ = calinski_harabasz_score(X, labels_) 1827 print('DI_', DI_) 1828 print('OSIE_', OSIE_) 1829 print('DI_rate_', DI_rate_) 1830 print('si_score_', si_score_) 1831 # DI_ 8.751 1832 # OSIE_ 10.52 1833 # DI_rate_ 0.832 1834 # si_score_ 0.587 1835 print('------------------------------RBFKernelsGraph - end----------------------------------') 1836 # test_StruInforEntropy 1837 def test_StruInforEntropy(): 1838 # 无权重图 or all weights == 1.0 1839 G = nx.Graph() 1840 edges_list = [(0, 1, {'weight': 1.0}), 1841 (0, 2, {'weight': 1.0}), # test: outer point 1842 (0, 3, {'weight': 1.0}), 1843 # (0, 4, {'weight': 1.0}), 1844 (1, 2, {'weight': 1.0}), # test: outer point 1845 (1, 3, {'weight': 1.0}), 1846 (2, 3, {'weight': 1.0}), # test: outer point 1847 (2, 4, {'weight': 5.0}), 1848 (4, 5, {'weight': 1.0}), 1849 (4, 7, {'weight': 1.0}), 1850 (5, 6, {'weight': 1.0}), 1851 (5, 7, {'weight': 1.0}), 1852 (5, 8, {'weight': 1.0}), 1853 (6, 8, {'weight': 1.0}), 1854 (7, 8, {'weight': 1.0}), 1855 (8, 9, {'weight': 5.0}), 1856 (9, 10, {'weight': 1.0}), 1857 (9, 12, {'weight': 1.0}), 1858 (9, 13, {'weight': 1.0}), 1859 (10, 11, {'weight': 1.0}), 1860 (10, 12, {'weight': 1.0}), 1861 (11, 12, {'weight': 1.0}), 1862 (11, 13, {'weight': 1.0}), 1863 (12, 13, {'weight': 1.0})] 1864 G.add_edges_from(edges_list) 1865 1866 # plot graph 1867 show_graph(G, with_labels=True) 1868 1869 # a = [9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 1870 # 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 1871 # 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 1872 # 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 1873 # 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 1874 # 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 1875 # 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 1876 # 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 1877 # 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 1878 # 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 1879 # 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 1880 # 10.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492, 9.492] 1881 # total_var = np.var(a) # 计算总体方差 ( 计算时除以样本数 N ) 1882 # sample_var = np.var(a, ddof=1) # 计算样本方差 ( 计算时除以 N - 1 ) 1883 1884 # # min2DStruInforEntropyPartition 1885 # results = min2DStruInforEntropyPartition(G, weight='weight') 1886 # print("Partition-Size(by min2DHG):", len(results)) 1887 # print("Partition(by min2DHG):", results) 1888 # # 2D-StruInforEntropy 1889 # HG, Vj, g_j, Gj_deg = StruInforEntropy(G, partition=results, weight='weight') 1890 # oneHG = get_oneStruInforEntropy(G, weight='weight') 1891 # print("1DStruInforEntropy:", oneHG) 1892 # print("2DStruInforEntropy:", HG) 1893 # print('--'*15) 1894 1895 # # maxDI 1896 # results = maxDIPartition(G, weight='weight')# 基础版 1897 # print("Partition-Size(by maxDI):", len(results)) 1898 # print("Partition(by maxDI):", results) 1899 # # 2D-StruInforEntropy 1900 # HG, Vj, g_j, Gj_deg = StruInforEntropy(G, partition=results, weight='weight') 1901 # oneHG = get_oneStruInforEntropy(G, weight='weight') 1902 # print("1DStruInforEntropy:", oneHG) 1903 # print("2DStruInforEntropy:", HG) 1904 # print("maxDI:", oneHG-HG) 1905 # oneHG, Vj, g_j, Gj_deg = get_oneStruInforEntropy_Partition(G, partition=results, weight='weight') 1906 # print("1DStruInforEntropy_Partition:", oneHG) 1907 1908 # print('--'*15) 1909 # results = [[0, 1, 2, 3], [4, 5, 6, 7, 8], [9, 10, 11, 12, 13]] 1910 # print(results) 1911 # HG, Vj, g_j, Gj_deg = StruInforEntropy(G, partition=results, weight='weight') 1912 # print("2DStruInforEntropy:", HG) 1913 # print('Vj', Vj) 1914 # print('g_j', g_j) 1915 # print('--'*15) 1916 1917 # edges_di = [] 1918 # edges = [(u, v, w['weight']) for u, v, w in G.edges(data=True)] 1919 # row, col, data = get_coo_matrix_from_G(G, weight='weight') 1920 # for edge in edges: 1921 # # DI_ij = delt_RXij(Xi=[edge[0]], Xj=[edge[1]], G=G, weight='weight') 1922 # DI_ij = deltDI_ij(row, col, data, ndq_a=[edge[0]], ndq_b=[edge[1]]) 1923 # DI_ij = float("%.3f" % (DI_ij)) 1924 # delt_di = ((edge[0], edge[1]), edge[2], DI_ij) 1925 # edges_di.append(delt_di) 1926 # print(delt_di) 1927 1928 # print('--' * 15) 1929 # results, DI = iter_maxDI(G, iter_max=50, pk_partion=None, weight='weight', n_jobs=4, verbose=0) # 并行加速 1930 # print(results) 1931 # print(DI[-1]) 1932 # print(DI) 1933 # print('--' * 15) 1934 1935 # results, DI = get_iter_maxDICluster(G, iter_max=50) # 并行加速 1936 # print(results) 1937 # print(DI[-1]) 1938 # print(DI) 1939 # print('--' * 15) 1940 1941 # maxDI 1942 results = maxDI(G, weight='weight') # 优化版 1943 print("Partition-Size(by maxDI):", len(results)) 1944 # 2D-StruInforEntropy 1945 HG, Vj, g_j, Gj_deg = StruInforEntropy(G, partition=results, weight='weight') 1946 oneHG = get_oneStruInforEntropy(G, weight='weight') 1947 print("1DStruInforEntropy:", float('%.3f' % oneHG)) 1948 print("2DStruInforEntropy:", float('%.3f' % HG)) 1949 # get_DI by Parallel 1950 DI = get_DI_Parallel(G, partion=results, weight='weight', n_jobs=-1) 1951 print("DI:", DI) 1952 partion_test = [[0, 1, 2, 3], [4, 5, 6, 7, 8], [9, 10, 11, 12, 13]] 1953 DI = get_DI_Parallel(G, partion=partion_test, weight='weight', n_jobs=-1) 1954 print("test-DI:", DI) 1955 row, col, data = get_coo_matrix_from_G(G, weight='weight') 1956 for i in range(len(results)): 1957 for j in range(i+1, len(results)): 1958 ndq_a, ndq_b = results[i], results[j] 1959 DI_ij = deltDI_ij(row, col, data, ndq_a=ndq_a, ndq_b=ndq_b) 1960 DI_ij = float("%.3f" % (DI_ij)) 1961 print(ndq_a, '+', ndq_b, '-', ndq_a + ndq_b, 'deltDI=', DI_ij) 1962 1963 # row, col, data = get_coo_matrix_from_G(G, weight='weight') 1964 # ndq_a = [0, 1, 2, 3] 1965 # ndq_b = [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] 1966 # Vi, Vj, Vij, gi, gj, gij, deg_i, deg_j, deg_ij = get_Vgdeg(row, col, data, ndq_a, ndq_b) 1967 # V_G = np.sum(data) * 2.0 1968 # ndq = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] 1969 # Vi, gi, deg_i = get_Vigidegi(row, col, data, ndq) 1970 # typical_MaxDIClustering_Demonstration 1971 def typical_MaxDIClustering_Demonstration(): 1972 # Load the geodata 1973 output = open('park_X.pkl', 'rb')# park_X = get_X_fromSHP(filename=r'./park/BJ_park_m.shp', epsg4326_srid=2436, plot=True) 1974 park_X = pickle.load(output) 1975 output.close() 1976 1977 output = open('busstop_X.pkl', 'rb')# busstop_X = get_X_fromSHP(filename=r'./busstop/BeijingBusStops_84.shp', epsg4326_srid=2436, plot=True) 1978 busstop_X = pickle.load(output)# (42161, 2) # Maybe MemoryError --> A RBF kernel matrix K: (42161, 42161)! 1979 output.close() 1980 1981 print('------------------------------Extract Partion Outlines----------------------------------') 1982 # Select Anyone Graph Extracted Method: getRadiusGraph、getKNNGraph、getRBFKernelsGraph 1983 G = getRadiusGraph(X=park_X, radius=500, merage_components=True, save=False, shpfile=False) 1984 partion_result = get_PKResult(G, initial_partition=None, gshow=False, edge_data_flg=True) 1985 outline_gdf = get_partion_result_outline(X=park_X, partion_result=partion_result, input_crs="EPSG:2436", 1986 output_crs=None, 1987 shpfile="partion_outline_shp.shp", save_shp=True, plot=False) 1988 output = open('Extract_Partion_Outlines_gdf.pkl', 'wb') 1989 pickle.dump(outline_gdf, output) 1990 output.close() 1991 print('------------------------------Extract Partion Outlines End----------------------------------') 1992 1993 # Clustering for demonstration 1994 X = park_X 1995 # Clustering by MaxDIClustering 1996 max_di_clus = MaxDIClustering(affinity='rbf', 1997 threshold=0.998, # other: getKNNGraph, getRBFKernelsGraph 1998 gamma=1.0, 1999 # for getRBFKernelsGraph # K(x, y) = exp(-gamma ||x-y||^2) ----> gamma = (2sigma)^-2 ; sigma^2 is the Gaussian kernel of variance. 2000 merage_components=True, # other: getKNNGraph, getRadiusGraph, getRBFKernelsGraph 2001 pk='3', # -- PK 2002 n_jobs=4).fit(X) 2003 print('DI_', max_di_clus.DI_) 2004 print('OSIE_', max_di_clus.OSIE_) 2005 print('DI_rate_', max_di_clus.DI_rate_) 2006 print('si_score_', max_di_clus.si_score_) 2007 # # # # # # # # # # # # # # # test and Demonstration - end # # # # # # # # # # # # # # # # 2008 2009 def main(): 2010 # # 1. test cKDTree and pairwise_kernels Graph 2011 # test() 2012 2013 # 2. test_StruInforEntropy 2014 test_StruInforEntropy() 2015 2016 # # 3. rbf_Clustering by MaxDIClustering 2017 # rbf_Clustering() 2018 2019 # # 4. typical_MaxDIClustering_Demonstration 2020 # typical_MaxDIClustering_Demonstration() 2021 2022 if __name__ == '__main__': 2023 main()