Given an integer array nums
, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4], Output: 6 Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
//DP: Time: O(n), Space:O(1) public int maxSubArray(int[] nums) { if (nums == null || nums.length == 0) { return 0; } int sum = nums[0]; int max = nums[0]; for (int i = 1; i < nums.length; i++) { sum = Math.max(sum + nums[i], nums[i]); max = Math.max(max, sum); } return max; } //Divide and Concur: Time: O(n!), Space: O(1) public int maxSubArray(int[] nums) { if (nums == null || nums.length == 0) { return 0; } return helper(nums, 0, nums.length - 1); } private int helper(int[] nums, int start, int end) { if (start >= end) { return nums[start]; } int mid = start + (end - start) / 2; int mmax = nums[mid]; int lmax = helper(nums, start, mid - 1); int rmax = helper(nums, mid + 1, end); int sum = mmax; for (int i = mid - 1; i >= start; --i) { sum += nums[i]; mmax = Math.max(mmax, sum); } sum = mmax;//不要忘记计算完左面的最大值,给sum归位 for (int i = mid + 1; i <= end; i++) { sum += nums[i]; mmax = Math.max(sum, mmax); } return Math.max(mmax, Math.max(lmax, rmax)); }