Easy Problem
时间限制:1000 ms | 内存限制:65536 KB
描写叙述
In this problem, you're to calculate the distance between a point P(xp, yp, zp) and a segment (x1, y1, z1) ? (x2, y2, z2), in a 3D space, i.e. the minimal distance from P to any point Q(xq, yq, zq) on the segment (a segment is part of a line).
输入
The first line contains a single integer T (1 ≤ T ≤ 1000), the number of test cases. Each test case is a single line containing 9 integers xp, yp, zp, x1, y1, z1, x2, y2, z2. These integers are all in [-1000,1000].
输出
For each test case, print the case number and the minimal distance, to two decimal places.
例子输入
3
0 0 0 0 1 0 1 1 0
1 0 0 1 0 1 1 1 0
-1 -1 -1 0 1 0 -1 0 -1
例子输出
Case 1: 1.00
Case 2: 0.71
时间限制:1000 ms | 内存限制:65536 KB
描写叙述
In this problem, you're to calculate the distance between a point P(xp, yp, zp) and a segment (x1, y1, z1) ? (x2, y2, z2), in a 3D space, i.e. the minimal distance from P to any point Q(xq, yq, zq) on the segment (a segment is part of a line).
输入
The first line contains a single integer T (1 ≤ T ≤ 1000), the number of test cases. Each test case is a single line containing 9 integers xp, yp, zp, x1, y1, z1, x2, y2, z2. These integers are all in [-1000,1000].
输出
For each test case, print the case number and the minimal distance, to two decimal places.
例子输入
3
0 0 0 0 1 0 1 1 0
1 0 0 1 0 1 1 1 0
-1 -1 -1 0 1 0 -1 0 -1
例子输出
Case 1: 1.00
Case 2: 0.71
Case 3: 1.00
题意:
为在一条线段上找到一点,与给定的P点距离最小。
非常明显的凸性函数,用三分法来解决。dist函数即为求某点到P点的距离。注意精度问题。
代码:
#include<iostream>
#include<cstdio>
#include<cmath>
#define eps 1e-8
using namespace std;
typedef struct node
{
double x,y,z;
}node;
node l,r,p;
double dist(node a,node b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)+(a.z-b.z)*(a.z-b.z));
}
int sgn(double a)
{
return (a>eps)-(a<-eps);
}
node getmid(node a,node b)
{
node mid;
mid.x=(a.x+b.x)/2;
mid.y=(a.y+b.y)/2;
mid.z=(a.z+b.z)/2;
return mid;
}
node search()
{
node mid,midmid;
while(sgn(dist(l,r))>0)
{
mid=getmid(l,r);
midmid=getmid(mid,r);
if(dist(p,mid)<dist(p,midmid))
r=midmid;
else
l=mid;
}
return r;
}
int main()
{
int t;node k;
cin>>t;
for(int i=1;i<=t;i++)
{
cin>>p.x>>p.y>>p.z;
cin>>l.x>>l.y>>l.z;
cin>>r.x>>r.y>>r.z;
k=search();
printf("Case %d: %.2lf
",i,dist(k,p));
}
return 0;
}