zoukankan      html  css  js  c++  java
  • hdu 4601 Letter Tree

    不easy啊。。

    一个小错误让我wa死了。找了一个晚上,怎么都找不到

    最后是对拍代码找到的错误。发现当步数比較小的时候答案就是对的,比較大的时候就不正确了

    想到一定是什么地方越界了。。

    power[i] = (i64)(power[i - 1] * 26) % mod;

    就是这行。。

    改成  power[i] = ((i64)power[i - 1] * 26) % mod; 

    就过了。。。

    这道题总的来说就是很综合,什么方面都涉及一点,核心部分还是把树转化成序列之后二分边界+RMQ,用dfn来确定边界的这种方法很好,很有意思

    事实上另一种方法,就是先从u节点往下走一步。然后在trie里面找,这个时候能够直接确定位置。由于在trie中已经是有序的了

    两种都能够,第一种相对来说好实现一点

    (hdu如今怎么不会爆栈了。

    。)

    //#pragma comment(linker, "/STACK:102400000,102400000")
    #include<iostream>
    #include<vector>
    #include<algorithm>
    #include<cstdio>
    #include<queue>
    #include<stack>
    #include<string>
    #include<map>
    #include<set>
    #include<cmath>
    #include<cassert>
    #include<cstring>
    #include<iomanip>
    using namespace std;
    #ifdef _WIN32
    typedef __int64 i64;
    #define out64 "%I64d
    "
    #define in64 "%I64d"
    #else
    typedef long long i64;
    #define out64 "%lld
    "
    #define in64 "%lld"
    #endif
    /************ for topcoder by zz1215 *******************/
    #define foreach(c,itr)  for(__typeof((c).begin()) itr=(c).begin();itr!=(c).end();itr++)
    #define FOR(i,a,b)      for( int i = (a) ; i <= (b) ; i ++)
    #define FF(i,a)         for( int i = 0 ; i < (a) ; i ++)
    #define FFD(i,a,b)      for( int i = (a) ; i >= (b) ; i --)
    #define S64(a)          scanf(in64,&a)
    #define SS(a)           scanf("%d",&a)
    #define LL(a)           ((a)<<1)
    #define RR(a)           (((a)<<1)+1)
    #define pb              push_back
    #define pf              push_front
    #define X               first
    #define Y               second
    #define CL(Q)           while(!Q.empty())Q.pop()
    #define MM(name,what)   memset(name,what,sizeof(name))
    #define MC(a,b)		memcpy(a,b,sizeof(b))
    #define MAX(a,b)        ((a)>(b)?(a):(b))
    #define MIN(a,b)        ((a)<(b)?(a):(b))
    #define read            freopen("out.txt","r",stdin)
    #define write           freopen("out1.txt","w",stdout)
    
    const int inf = 0x3f3f3f3f;
    const i64 inf64 = 0x3f3f3f3f3f3f3f3fLL;
    const double oo = 10e9;
    const double eps = 10e-9;
    const double pi = acos(-1.0);
    const int mod = 1000000007;
    const int maxn = 100111;
    
    struct Node
    {
    	int now;
    	int to;
    	int c;
    };
    
    struct Trie
    {
    	int to[26];
    	int rank;
    }zx[maxn];
    
    int head = 0;
    int use;
    
    int get()
    {
    	use++;
    	MM(zx[use].to, -1);
    	zx[use].rank = 0;
    	return use;
    }
    
    int T;
    int n, m;
    vector<Node>g[maxn];
    vector<int>level[maxn];
    int dep[maxn];
    int dfn[maxn];
    int dfv[maxn];
    int df;
    
    int power[maxn];
    int vis[maxn];
    int t[maxn];
    
    int pos[maxn];
    int pmod[maxn];
    int rankmod[maxn];
    int rk;
    
    int c[maxn];
    
    int dfnpos[maxn];
    int es[maxn][2];
    vector<int>ary;
    int st[maxn][20];
    int pow2[20];
    int lg2[maxn];
    
    void dfs(int now=1,int step=0)
    {
    	vis[now] = true;
    	int to;
    	dfn[now] = df;
    	dfv[df] = now;
    	df++;
    	dep[now] = step;
    	for (int i = 0; i <(int) g[now].size(); i++)
    	{
    		to = g[now][i].to;
    		if (!vis[to])
    		{
    			t[to] = now;
    			c[to] = g[now][i].c;
    			dfs(to,step+1);
    		}
    	}
    }
    
    void make_trie()
    {
    	use = -1;
    	get();
    	int trie = head;
    	int now = 1;
    	pos[now] = trie;
    	int to,temp;
    	pmod[0] = 0;
    	for (int i = 2; i < df; i++)
    	{
    		to = dfv[i];
    		now = t[to];
    		trie = pos[now];
    		if (zx[trie].to[c[to]] == -1)
    		{
    			temp = get();
    			zx[trie].to[c[to]] = temp;
    			pmod[temp] = ((i64)pmod[trie] * 26 + c[to]) % mod;
    		}
    		pos[to] = zx[trie].to[c[to]];
    	}
    }
    
    void make_rank(int now = head)
    {
    	zx[now].rank = rk++;
    	for (int i = 0; i < 26; i++)
    	{
    		if (zx[now].to[i] != -1)
    		{
    			make_rank(zx[now].to[i]);
    		}
    	}
    }
    
    void sparsetable()
    {
    	for (int i = 1; i <= n; i++)
    	{
    		st[i][0] = zx[pos[dfv[ary[i]]]].rank;
    	}
    	for (int j = 1; j <= lg2[n]; j++)
    	{
    		for (int i = 1; i <= n; i++)
    		{
    			if (i + pow2[j - 1] <= n)
    			{
    				st[i][j] = max(st[i][j - 1], st[i + pow2[j - 1]][j - 1]);
    			}
    			else
    			{
    				st[i][j] = st[i][j - 1];
    			}
    		}
    	}
    }
    
    int rmq(int l,int r)
    {
    	return max(st[l][lg2[r - l]], st[r - pow2[lg2[r - l]]][lg2[r - l]]);
    }
    
    int find(int x, int step)
    {
    	int low = dfn[x];
    	int up;
    	int temp = dfnpos[dfn[x]] + 1;
    	step += dep[x];
    	int l, r;
    	if (temp < es[dep[x]][1])
    	{
    		up = ary[temp];
    	}
    	else
    	{
    		up = inf;
    	}
    	l = upper_bound (ary.begin() + es[step][0], ary.begin() + es[step][1], low ) - ary.begin();
    	r = upper_bound (ary.begin() + es[step][0], ary.begin() + es[step][1], up ) - ary.begin();
    	if (l == r)
    	{
    		return -1;
    	}
    	int mrank = rmq(l, r);
    	int xrank = zx[pos[x]].rank;
    	return (((i64)rankmod[mrank] - ((i64)rankmod[xrank] * (i64)power[step - dep[x]])%mod)+mod)%mod;
    }
    
    void start()
    {
    	for (int i = 0; i <= n; i++)
    	{
    		vis[i] = false;
    	}
    	t[1] = -1;
    	df = 1;
    	dfs();
    	for (int i = 1; i <= n; i++)
    	{
    		level[dep[i]].push_back(dfn[i]);
    	}
    	for (int i = 1; i <= n; i++)
    	{
    		sort(level[i].begin(), level[i].end());
    	}
    	ary.clear();
    	ary.push_back(0);
    	for (int i = 0; i <= n; i++)
    	{
    		es[i][0] = ary.size();
    		for (int j = 0; j < (int)level[i].size(); j++)
    		{
    			ary.push_back(level[i][j]);
    		}
    		es[i][1] = ary.size();
    	}
    
    	for (int i = 1; i <= n; i++)
    	{
    		dfnpos[ary[i]] = i;
    	}
    		
    	make_trie();
    
    	rk = 0;
    	make_rank();
    
    	for (int i = 0; i <= use; i++)
    	{
    		rankmod[zx[i].rank] = pmod[i];
    	}
    
    	sparsetable();
    
    }
    
    void destroy()
    {
    	for (int i = 0; i <= n; i++)
    	{
    		g[i].clear();
    		level[i].clear();
    	}
    }
    
    int main()
    {
    	//read;
    	//write;
    	power[0] = 1;
    	for (int i = 1; i < maxn; i++)
    	{
    		power[i] = ((i64)power[i - 1] * 26) % mod;
    	}
    	pow2[0] = 1;
    	lg2[1] = 0;
    	for (int i = 1; i < 20; i++)
    	{
    		pow2[i] = pow2[i - 1] * 2;
    		if(pow2[i]<maxn)
    		lg2[pow2[i]] = i;
    	}
    
    	for (int i = 3; i < maxn; i++)
    	{
    		if (!lg2[i])
    		{
    			lg2[i] = lg2[i - 1];
    		}
    	}
    	cin >> T;
    	while (T--)
    	{
    		cin >> n;
    		int x, y;
    		char z;
    		Node node;
    		for (int i = 1; i <= n - 1; i++)
    		{
    			//cin >> x >> y >> z;
    			scanf("%d%d %c", &x, &y, &z);
    			node.now = x;
    			node.to = y;
    			node.c = z - 'a';
    			g[node.now].push_back(node);
    			swap(node.now, node.to);
    			g[node.now].push_back(node);
    		}
    		start();
    		cin >> m;
    		for (int i = 1; i <= m; i++)
    		{
    		//	cin >> x >> y;
    			scanf("%d%d", &x, &y);
    			if (y == 0)
    			{
    				printf("0
    ");
    				continue;
    			}
    			int ans = find(x, y);
    			if (ans == -1)
    			{
    			//	cout << "IMPOSSIBLE" << endl;
    				printf("IMPOSSIBLE
    ");
    			}
    			else
    			{
    			//	cout << ans << endl;
    				printf("%d
    ",ans);
    			}
    		}
    		destroy();
    	}
    	return 0;
    }
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    


  • 相关阅读:
    powerdesigner得使用放法
    sql sever连接名忘记了该怎么办
    算法第四版 1.2.10
    算法第四版 1.2.8
    算法第四版 1.2.6
    算法第四版 1.2.2
    二分查找递归实现
    关于斐波那契数列和递归
    编写一段代码,打印一个M行N列的二维数组转置。(交换行和列)
    基础实验2-2.1 整数的分类处理 (20分)
  • 原文地址:https://www.cnblogs.com/jhcelue/p/7253709.html
Copyright © 2011-2022 走看看