zoukankan      html  css  js  c++  java
  • 3D打印技术之切片引擎(5)

    【此系列文章基于熔融沉积( fused depostion modeling, FDM )成形工艺】
    从这一篇文章開始,就開始说填充。在3D打印切片技术中,填充算法是最核心的部分。3D打印技术的经常使用的指标包含:打印速度,稳固性,柔韧性,逼真度,密度(关系着使用打印材料的多少)。都与填充算法有着直接的关系。能够说衡量一个切片引擎的优劣主要看它的填充算法是否优越。


    事实上我開始研发切片引擎的时候,因为不是全部的模型打印都须要支撑,并且针对边界的分层技术又比較easy实现,所曾经面的算法开发时间非常短,大部分时间耗在了填充算法的研究上。也就是填充算法的不断优化使得我的引擎的打印质量不断的接近于skeinforge。
    填充算法是一个世界难题。眼下世界上最先进的填充算法也还是问题多多。怎样最优化的填充使得模型兼顾稳固逼真,并且密度小,打印速度快。这不是简单的二维几何填充所能做的到的。我大学的专业是临床医学。记得人体解剖学中提到过的骨小梁结构,事实上才是最合理的填充方式,可是怎样用数学实现骨小梁。任重而道远啊。


    行,立即进入正题。在这一篇文章里,我就先说一下填充算法中最简单的一种——线填充。
    首先。须要引用计算机图形学二维图形的扫描线填充算法。例如以下图:
    这里写图片描写叙述
    简单的描写叙述:射线与多边形相交,与边界交点个数为奇数。为内点。偶数为外点或者边界点。可是。还有几种特殊情况须要特殊处理:每当一条扫描线经过多边形的一个顶点时,扫描线在该顶点处与多边形的两条边相交,这种情况可能导致在这条扫描线的交点列表上要添加两个点。

    当扫描线与奇数边相交时,这时候须要把扫描线与两側的有公共交点的线的交点算作一个交点。

    例如以下图b线:
    这里写图片描写叙述
    另外。还有边界线与扫描线重合的情况,须要全然规避掉。
    对于最简单的线填充,掌握这个原理基本就没有问题了。所须要注意的就是上下两层不能同一方向的填充,避免打印的模型不稳定,能够考虑採用依次採用x轴平行的方向和y轴平行的方向。这样用一组等间距的平行线扫描,採用上述的算法。最简单的线填充就完毕了。


    但这种线填充会引出一个问题,回想一下在第一讲中说到的——一个成功的切片引擎应该满足的几点,这种填充尽管看似基本满足要求。但绝大多数情况在这几点上做的非常不够,尤其是某一层是个狭长的结构。每一行的扫描线就非常的短,打印机就走走停停,不断的更换打印方向。打印速度受到极大的影响,更重要的是扫描线对边界冲击次数太多。肯定要影响到表面的效果,影响美观。并且频繁的走走停停,更换方向,对机器的寿命也是极大的消耗。
    能够考虑这种解决方式,第一步:把某一层的二维图形切割成若干个凸集或者近似凸集。第二步,对每个凸集进行主元分析。

    第三步,利用得到的主元方向。先把x轴或者y轴变换到与主元平行的方向,这里如果该线性变换为M,利用上述的算法进行填充,然后再利用M1变换回原来的位置。
    主元分析是利用协方差矩阵确定边界向量的主元向量。这里的点是二维,可简单表示:

    μx=12ni=1n(beginPointxi+endPointxi)
    当中beginPointxi为第i个边界矢量的起始向量的x分量,endPointxi为第i个边界矢量的结束向量的x分量;y分量以此类推。

    以下就開始构造协方差矩阵CC的第j行第k列元素例如以下(1j,k2):

    Ckj=12n 查看全文
  • 相关阅读:
    VS2008编写MFC程序--使用opencv2.4()
    November 02nd, 2017 Week 44th Thursday
    November 01st, 2017 Week 44th Wednesday
    October 31st, 2017 Week 44th Tuesday
    October 30th, 2017 Week 44th Monday
    October 29th, 2017 Week 44th Sunday
    October 28th, 2017 Week 43rd Saturday
    October 27th, 2017 Week 43rd Friday
    October 26th, 2017 Week 43rd Thursday
    October 25th, 2017 Week 43rd Wednesday
  • 原文地址:https://www.cnblogs.com/jhcelue/p/7397677.html
Copyright © 2011-2022 走看看