zoukankan      html  css  js  c++  java
  • 【加解密专辑】对接触到的PGP、RSA、AES加解密算法整理

    先贴代码,有空再整理思路

    PGP加密

    using System;
    using System.IO;
    using Org.BouncyCastle.Bcpg;
    using Org.BouncyCastle.Bcpg.OpenPgp;
    using Org.BouncyCastle.Security;
    using Org.BouncyCastle.Utilities.IO;
    using System.Linq;
    
    namespace Server5.V2.Common
    {
        public static class PGPEncryptDecrypt
        {
    
            static void test()
            {
                var inputFileName = "";
                var outputFileName = "";
                var recipientKeyFileName = "";
                var shouldArmor = false;
                var shouldCheckIntegrity = false;
    
                //Encrypt a file:
                PGPEncryptDecrypt.EncryptFile(inputFileName,
                                  outputFileName,
                                  recipientKeyFileName,
                                  shouldArmor,
                                  shouldCheckIntegrity);
    
                var privateKeyFileName = "";
                var passPhrase = "";
    
                //Decrypt a file:
                PGPEncryptDecrypt.Decrypt(inputFileName,
                              privateKeyFileName,
                              passPhrase,
                              outputFileName);
            }
    
            private const int BufferSize = 0x10000; // should always be power of 2
    
            #region Encrypt
    
            /*
             * Encrypt the file.
             */
    
            public static void EncryptFile(string inputFile, string outputFile, string publicKeyFile, bool armor, bool withIntegrityCheck)
            {
                try
                {
                    using (Stream publicKeyStream = File.OpenRead(publicKeyFile))
                    {
                        PgpPublicKey encKey = ReadPublicKey(publicKeyStream);
    
                        using (MemoryStream bOut = new MemoryStream())
                        {
                            PgpCompressedDataGenerator comData = new PgpCompressedDataGenerator(CompressionAlgorithmTag.Zip);
                            PgpUtilities.WriteFileToLiteralData(comData.Open(bOut), PgpLiteralData.Binary, new FileInfo(inputFile));
    
                            comData.Close();
                            PgpEncryptedDataGenerator cPk = new PgpEncryptedDataGenerator(SymmetricKeyAlgorithmTag.Cast5, withIntegrityCheck, new SecureRandom());
    
                            cPk.AddMethod(encKey);
                            byte[] bytes = bOut.ToArray();
    
                            using (Stream outputStream = File.Create(outputFile))
                            {
                                if (armor)
                                {
                                    using (ArmoredOutputStream armoredStream = new ArmoredOutputStream(outputStream))
                                    {
                                        using (Stream cOut = cPk.Open(armoredStream, bytes.Length))
                                        {
                                            cOut.Write(bytes, 0, bytes.Length);
                                        }
                                    }
                                }
                                else
                                {
                                    using (Stream cOut = cPk.Open(outputStream, bytes.Length))
                                    {
                                        cOut.Write(bytes, 0, bytes.Length);
                                    }
                                }
                            }
                        }
                    }
                }
                catch (PgpException e)
                {
                    throw;
                }
            }
    
            #endregion Encrypt
    
            #region Encrypt and Sign
    
            /*
             * Encrypt and sign the file pointed to by unencryptedFileInfo and
             */
    
            public static void EncryptAndSign(string inputFile, string outputFile, string publicKeyFile, string privateKeyFile, string passPhrase, bool armor)
            {
                PgpEncryptionKeys encryptionKeys = new PgpEncryptionKeys(publicKeyFile, privateKeyFile, passPhrase);
    
                if (!File.Exists(inputFile))
                    throw new FileNotFoundException(String.Format("Input file [{0}] does not exist.", inputFile));
    
                if (!File.Exists(publicKeyFile))
                    throw new FileNotFoundException(String.Format("Public Key file [{0}] does not exist.", publicKeyFile));
    
                if (!File.Exists(privateKeyFile))
                    throw new FileNotFoundException(String.Format("Private Key file [{0}] does not exist.", privateKeyFile));
    
                if (String.IsNullOrEmpty(passPhrase))
                    throw new ArgumentNullException("Invalid Pass Phrase.");
    
                if (encryptionKeys == null)
                    throw new ArgumentNullException("Encryption Key not found.");
    
                using (Stream outputStream = File.Create(outputFile))
                {
                    if (armor)
                        using (ArmoredOutputStream armoredOutputStream = new ArmoredOutputStream(outputStream))
                        {
                            OutputEncrypted(inputFile, armoredOutputStream, encryptionKeys);
                        }
                    else
                        OutputEncrypted(inputFile, outputStream, encryptionKeys);
                }
            }
    
            private static void OutputEncrypted(string inputFile, Stream outputStream, PgpEncryptionKeys encryptionKeys)
            {
                using (Stream encryptedOut = ChainEncryptedOut(outputStream, encryptionKeys))
                {
                    FileInfo unencryptedFileInfo = new FileInfo(inputFile);
                    using (Stream compressedOut = ChainCompressedOut(encryptedOut))
                    {
                        PgpSignatureGenerator signatureGenerator = InitSignatureGenerator(compressedOut, encryptionKeys);
                        using (Stream literalOut = ChainLiteralOut(compressedOut, unencryptedFileInfo))
                        {
                            using (FileStream inputFileStream = unencryptedFileInfo.OpenRead())
                            {
                                WriteOutputAndSign(compressedOut, literalOut, inputFileStream, signatureGenerator);
                                inputFileStream.Close();
                            }
                        }
                    }
                }
            }
    
            private static void WriteOutputAndSign(Stream compressedOut, Stream literalOut, FileStream inputFile, PgpSignatureGenerator signatureGenerator)
            {
                int length = 0;
                byte[] buf = new byte[BufferSize];
                while ((length = inputFile.Read(buf, 0, buf.Length)) > 0)
                {
                    literalOut.Write(buf, 0, length);
                    signatureGenerator.Update(buf, 0, length);
                }
                signatureGenerator.Generate().Encode(compressedOut);
            }
    
            private static Stream ChainEncryptedOut(Stream outputStream, PgpEncryptionKeys m_encryptionKeys)
            {
                PgpEncryptedDataGenerator encryptedDataGenerator;
                encryptedDataGenerator = new PgpEncryptedDataGenerator(SymmetricKeyAlgorithmTag.TripleDes, new SecureRandom());
                encryptedDataGenerator.AddMethod(m_encryptionKeys.PublicKey);
                return encryptedDataGenerator.Open(outputStream, new byte[BufferSize]);
            }
    
            private static Stream ChainCompressedOut(Stream encryptedOut)
            {
                PgpCompressedDataGenerator compressedDataGenerator = new PgpCompressedDataGenerator(CompressionAlgorithmTag.Zip);
                return compressedDataGenerator.Open(encryptedOut);
            }
    
            private static Stream ChainLiteralOut(Stream compressedOut, FileInfo file)
            {
                PgpLiteralDataGenerator pgpLiteralDataGenerator = new PgpLiteralDataGenerator();
                return pgpLiteralDataGenerator.Open(compressedOut, PgpLiteralData.Binary, file);
            }
    
            private static PgpSignatureGenerator InitSignatureGenerator(Stream compressedOut, PgpEncryptionKeys m_encryptionKeys)
            {
                const bool IsCritical = false;
                const bool IsNested = false;
                PublicKeyAlgorithmTag tag = m_encryptionKeys.SecretKey.PublicKey.Algorithm;
                PgpSignatureGenerator pgpSignatureGenerator = new PgpSignatureGenerator(tag, HashAlgorithmTag.Sha1);
                pgpSignatureGenerator.InitSign(PgpSignature.BinaryDocument, m_encryptionKeys.PrivateKey);
                foreach (string userId in m_encryptionKeys.SecretKey.PublicKey.GetUserIds())
                {
                    PgpSignatureSubpacketGenerator subPacketGenerator = new PgpSignatureSubpacketGenerator();
                    subPacketGenerator.SetSignerUserId(IsCritical, userId);
                    pgpSignatureGenerator.SetHashedSubpackets(subPacketGenerator.Generate());
                    // Just the first one!
                    break;
                }
                pgpSignatureGenerator.GenerateOnePassVersion(IsNested).Encode(compressedOut);
                return pgpSignatureGenerator;
            }
    
            #endregion Encrypt and Sign
    
            #region Decrypt
    
            /*
           * decrypt a given stream.
           */
    
            public static void Decrypt(string inputfile, string privateKeyFile, string passPhrase, string outputFile)
            {
                if (!File.Exists(inputfile))
                    throw new FileNotFoundException(String.Format("Encrypted File [{0}] not found.", inputfile));
    
                if (!File.Exists(privateKeyFile))
                    throw new FileNotFoundException(String.Format("Private Key File [{0}] not found.", privateKeyFile));
    
                if (String.IsNullOrEmpty(outputFile))
                    throw new ArgumentNullException("Invalid Output file path.");
    
                using (Stream inputStream = File.OpenRead(inputfile))
                {
                    using (Stream keyIn = File.OpenRead(privateKeyFile))
                    {
                        Decrypt(inputStream, keyIn, passPhrase, outputFile);
                    }
                }
            }
    
            /*
            * decrypt a given stream.
            */
    
            public static void Decrypt(Stream inputStream, Stream privateKeyStream, string passPhrase, string outputFile)
            {
                try
                {
                    PgpObjectFactory pgpF = null;
                    PgpEncryptedDataList enc = null;
                    PgpObject o = null;
                    PgpPrivateKey sKey = null;
                    PgpPublicKeyEncryptedData pbe = null;
                    PgpSecretKeyRingBundle pgpSec = null;
    
                    pgpF = new PgpObjectFactory(PgpUtilities.GetDecoderStream(inputStream));
                    // find secret key
                    pgpSec = new PgpSecretKeyRingBundle(PgpUtilities.GetDecoderStream(privateKeyStream));
    
                    if (pgpF != null)
                        o = pgpF.NextPgpObject();
    
                    // the first object might be a PGP marker packet.
                    if (o is PgpEncryptedDataList)
                        enc = (PgpEncryptedDataList)o;
                    else
                        enc = (PgpEncryptedDataList)pgpF.NextPgpObject();
    
                    // decrypt
                    foreach (PgpPublicKeyEncryptedData pked in enc.GetEncryptedDataObjects())
                    {
                        sKey = FindSecretKey(pgpSec, pked.KeyId, passPhrase.ToCharArray());
    
                        if (sKey != null)
                        {
                            pbe = pked;
                            break;
                        }
                    }
    
                    if (sKey == null)
                        throw new ArgumentException("Secret key for message not found.");
    
                    PgpObjectFactory plainFact = null;
    
                    using (Stream clear = pbe.GetDataStream(sKey))
                    {
                        plainFact = new PgpObjectFactory(clear);
                    }
    
                    PgpObject message = plainFact.NextPgpObject();
    
                    if (message is PgpCompressedData)
                    {
                        PgpCompressedData cData = (PgpCompressedData)message;
                        PgpObjectFactory of = null;
    
                        using (Stream compDataIn = cData.GetDataStream())
                        {
                            of = new PgpObjectFactory(compDataIn);
                        }
    
                        message = of.NextPgpObject();
                        if (message is PgpOnePassSignatureList)
                        {
                            message = of.NextPgpObject();
                            PgpLiteralData Ld = null;
                            Ld = (PgpLiteralData)message;
                            using (Stream output = File.Create(outputFile))
                            {
                                Stream unc = Ld.GetInputStream();
                                Streams.PipeAll(unc, output);
                            }
                        }
                        else
                        {
                            PgpLiteralData Ld = null;
                            Ld = (PgpLiteralData)message;
                            using (Stream output = File.Create(outputFile))
                            {
                                Stream unc = Ld.GetInputStream();
                                Streams.PipeAll(unc, output);
                            }
                        }
                    }
                    else if (message is PgpLiteralData)
                    {
                        PgpLiteralData ld = (PgpLiteralData)message;
                        string outFileName = ld.FileName;
    
                        using (Stream fOut = File.Create(outputFile))
                        {
                            Stream unc = ld.GetInputStream();
                            Streams.PipeAll(unc, fOut);
                        }
                    }
                    else if (message is PgpOnePassSignatureList)
                        throw new PgpException("Encrypted message contains a signed message - not literal data.");
                    else
                        throw new PgpException("Message is not a simple encrypted file - type unknown.");
    
                    #region commented code
    
                    //if (pbe.IsIntegrityProtected())
                    //{
                    //    if (!pbe.Verify())
                    //        msg = "message failed integrity check.";
                    //    //Console.Error.WriteLine("message failed integrity check");
                    //    else
                    //        msg = "message integrity check passed.";
                    //    //Console.Error.WriteLine("message integrity check passed");
                    //}
                    //else
                    //{
                    //    msg = "no message integrity check.";
                    //    //Console.Error.WriteLine("no message integrity check");
                    //}
    
                    #endregion commented code
                }
                catch (PgpException ex)
                {
                    throw;
                }
            }
    
            #endregion Decrypt
    
            #region Private helpers
    
            /*
            * A simple routine that opens a key ring file and loads the first available key suitable for encryption.
            */
    
            private static PgpPublicKey ReadPublicKey(Stream inputStream)
            {
                inputStream = PgpUtilities.GetDecoderStream(inputStream);
    
                PgpPublicKeyRingBundle pgpPub = new PgpPublicKeyRingBundle(inputStream);
    
                // we just loop through the collection till we find a key suitable for encryption, in the real
                // world you would probably want to be a bit smarter about this.
                // iterate through the key rings.
                foreach (PgpPublicKeyRing kRing in pgpPub.GetKeyRings())
                {
                    foreach (PgpPublicKey k in kRing.GetPublicKeys())
                    {
                        if (k.IsEncryptionKey)
                            return k;
                    }
                }
    
                throw new ArgumentException("Can't find encryption key in key ring.");
            }
    
            /*
            * Search a secret key ring collection for a secret key corresponding to keyId if it exists.
            */
    
            private static PgpPrivateKey FindSecretKey(PgpSecretKeyRingBundle pgpSec, long keyId, char[] pass)
            {
                PgpSecretKey pgpSecKey = pgpSec.GetSecretKey(keyId);
    
                if (pgpSecKey == null)
                    return null;
    
                return pgpSecKey.ExtractPrivateKey(pass);
            }
    
            #endregion Private helpers
        }
    
        public class PgpEncryptionKeys
        {
            public PgpPublicKey PublicKey { get; private set; }
    
            public PgpPrivateKey PrivateKey { get; private set; }
    
            public PgpSecretKey SecretKey { get; private set; }
    
            /// <summary>
            /// Initializes a new instance of the EncryptionKeys class.
            /// Two keys are required to encrypt and sign data. Your private key and the recipients public key.
            /// The data is encrypted with the recipients public key and signed with your private key.
            /// </summary>
            /// <param name="publicKeyPath">The key used to encrypt the data</param>
            /// <param name="privateKeyPath">The key used to sign the data.</param>
            /// <param name="passPhrase">The (your) password required to access the private key</param>
            /// <exception cref="ArgumentException">Public key not found. Private key not found. Missing password</exception>
            public PgpEncryptionKeys(string publicKeyPath, string privateKeyPath, string passPhrase)
            {
                if (!File.Exists(publicKeyPath))
                    throw new ArgumentException("Public key file not found", "publicKeyPath");
                if (!File.Exists(privateKeyPath))
                    throw new ArgumentException("Private key file not found", "privateKeyPath");
                if (String.IsNullOrEmpty(passPhrase))
                    throw new ArgumentException("passPhrase is null or empty.", "passPhrase");
                PublicKey = ReadPublicKey(publicKeyPath);
                SecretKey = ReadSecretKey(privateKeyPath);
                PrivateKey = ReadPrivateKey(passPhrase);
            }
    
            #region Secret Key
    
            private PgpSecretKey ReadSecretKey(string privateKeyPath)
            {
                using (Stream keyIn = File.OpenRead(privateKeyPath))
                {
                    using (Stream inputStream = PgpUtilities.GetDecoderStream(keyIn))
                    {
                        PgpSecretKeyRingBundle secretKeyRingBundle = new PgpSecretKeyRingBundle(inputStream);
                        PgpSecretKey foundKey = GetFirstSecretKey(secretKeyRingBundle);
                        if (foundKey != null)
                            return foundKey;
                    }
                }
                throw new ArgumentException("Can't find signing key in key ring.");
            }
    
            /// <summary>
            /// Return the first key we can use to encrypt.
            /// Note: A file can contain multiple keys (stored in "key rings")
            /// </summary>
            private PgpSecretKey GetFirstSecretKey(PgpSecretKeyRingBundle secretKeyRingBundle)
            {
                foreach (PgpSecretKeyRing kRing in secretKeyRingBundle.GetKeyRings())
                {
                    PgpSecretKey key = kRing.GetSecretKeys()
                        .Cast<PgpSecretKey>()
                        .Where(k => k.IsSigningKey)
                        .FirstOrDefault();
                    if (key != null)
                        return key;
                }
                return null;
            }
    
            #endregion Secret Key
    
            #region Public Key
    
            private PgpPublicKey ReadPublicKey(string publicKeyPath)
            {
                using (Stream keyIn = File.OpenRead(publicKeyPath))
                {
                    using (Stream inputStream = PgpUtilities.GetDecoderStream(keyIn))
                    {
                        PgpPublicKeyRingBundle publicKeyRingBundle = new PgpPublicKeyRingBundle(inputStream);
                        PgpPublicKey foundKey = GetFirstPublicKey(publicKeyRingBundle);
                        if (foundKey != null)
                            return foundKey;
                    }
                }
                throw new ArgumentException("No encryption key found in public key ring.");
            }
    
            private PgpPublicKey GetFirstPublicKey(PgpPublicKeyRingBundle publicKeyRingBundle)
            {
                foreach (PgpPublicKeyRing kRing in publicKeyRingBundle.GetKeyRings())
                {
                    PgpPublicKey key = kRing.GetPublicKeys()
                        .Cast<PgpPublicKey>()
                        .Where(k => k.IsEncryptionKey)
                        .FirstOrDefault();
                    if (key != null)
                        return key;
                }
                return null;
            }
    
            #endregion Public Key
    
            #region Private Key
    
            private PgpPrivateKey ReadPrivateKey(string passPhrase)
            {
                PgpPrivateKey privateKey = SecretKey.ExtractPrivateKey(passPhrase.ToCharArray());
                if (privateKey != null)
                    return privateKey;
                throw new ArgumentException("No private key found in secret key.");
            }
    
            #endregion Private Key
        }
    }
    View Code

    调用方法举例

                    PGPEncryptDecrypt.EncryptFile(file.FullName, file.FullName + ".DAT", "D:\test\key\dsfpublic.asc", false, false);
    
                    PGPEncryptDecrypt.Decrypt(file.FullName + ".DAT", "D:\test\key\dsfsecret.asc", "mon123day", file.FullName + ".ZIP");

    测试代码

            static void test()
            {
                var inputFileName = "";
                var outputFileName = "";
                var recipientKeyFileName = "";
                var shouldArmor = false;
                var shouldCheckIntegrity = false;
    
                //Encrypt a file:
                PGPEncryptDecrypt.EncryptFile(inputFileName,
                                  outputFileName,
                                  recipientKeyFileName,
                                  shouldArmor,
                                  shouldCheckIntegrity);
    
                var privateKeyFileName = "";
                var passPhrase = "";
    
                //Decrypt a file:
                PGPEncryptDecrypt.Decrypt(inputFileName,
                              privateKeyFileName,
                              passPhrase,
                              outputFileName);
            }

    RSA加密

    using System;
    using System.Collections.Generic;
    using System.Linq;
    using System.Security.Cryptography;
    using System.Text;
    
    namespace Server5.V2.Common
    {
        /// <summary>
        /// 非对称RSA加密类 可以参考
        /// http://www.cnblogs.com/hhh/archive/2011/06/03/2070692.html
        /// http://blog.csdn.net/zhilunchen/article/details/2943158
        /// 若是私匙加密 则需公钥解密
        /// 反正公钥加密 私匙来解密
        /// 需要BigInteger类来辅助
        /// </summary>
        public static class RSAHelper
        {
            static void test()
            {
                string str = "{"sc":"his51","no":"1","na":"管理员"}";
                System.Diagnostics.Debug.Print("明文:
    " + str + "
    ");
                RSAHelper.RSAKey keyPair = RSAHelper.GetRASKey();
                System.Diagnostics.Debug.Print("公钥:
    " + keyPair.PublicKey + "
    ");
                System.Diagnostics.Debug.Print("私钥:
    " + keyPair.PrivateKey + "
    ");
    
                string en = RSAHelper.EncryptString(str, keyPair.PrivateKey);
                System.Diagnostics.Debug.Print("公钥加密后:
    " + en + "
    ");
    
                var de = RSAHelper.DecryptString(en, keyPair.PublicKey);
                System.Diagnostics.Debug.Print("解密:
    " + de + "
    ");
                Console.ReadKey();
            }
    
            /// <summary>
            /// RSA的容器 可以解密的源字符串长度为 DWKEYSIZE/8-11 
            /// </summary>
            public const int DWKEYSIZE = 1024;
    
            /// <summary>
            /// RSA加密的密匙结构  公钥和私匙
            /// </summary>
            public struct RSAKey
            {
                public string PublicKey { get; set; }
                public string PrivateKey { get; set; }
            }
    
            #region 得到RSA的解谜的密匙对
            /// <summary>
            /// 得到RSA的解谜的密匙对
            /// </summary>
            /// <returns></returns>
            public static RSAKey GetRASKey()
            {
                RSACryptoServiceProvider.UseMachineKeyStore = true;
                //声明一个指定大小的RSA容器
                RSACryptoServiceProvider rsaProvider = new RSACryptoServiceProvider(DWKEYSIZE);
                //取得RSA容易里的各种参数
                RSAParameters p = rsaProvider.ExportParameters(true);
    
                return new RSAKey()
                {
                    PublicKey = ComponentKey(p.Exponent, p.Modulus),
                    PrivateKey = ComponentKey(p.D, p.Modulus)
                };
            }
            #endregion
    
            #region 检查明文的有效性 DWKEYSIZE/8-11 长度之内为有效 中英文都算一个字符
            /// <summary>
            /// 检查明文的有效性 DWKEYSIZE/8-11 长度之内为有效 中英文都算一个字符
            /// </summary>
            /// <param name="source"></param>
            /// <returns></returns>
            public static bool CheckSourceValidate(string source)
            {
                return (DWKEYSIZE / 8 - 11) >= source.Length;
            }
            #endregion
    
            #region 组合解析密匙
            /// <summary>
            /// 组合成密匙字符串
            /// </summary>
            /// <param name="b1"></param>
            /// <param name="b2"></param>
            /// <returns></returns>
            private static string ComponentKey(byte[] b1, byte[] b2)
            {
                List<byte> list = new List<byte>();
                //在前端加上第一个数组的长度值 这样今后可以根据这个值分别取出来两个数组
                list.Add((byte)b1.Length);
                list.AddRange(b1);
                list.AddRange(b2);
                byte[] b = list.ToArray<byte>();
                return Convert.ToBase64String(b);
            }
    
            /// <summary>
            /// 解析密匙
            /// </summary>
            /// <param name="key">密匙</param>
            /// <param name="b1">RSA的相应参数1</param>
            /// <param name="b2">RSA的相应参数2</param>
            private static void ResolveKey(string key, out byte[] b1, out byte[] b2)
            {
                //从base64字符串 解析成原来的字节数组
                byte[] b = Convert.FromBase64String(key);
                //初始化参数的数组长度
                b1 = new byte[b[0]];
                b2 = new byte[b.Length - b[0] - 1];
                //将相应位置是值放进相应的数组
                for (int n = 1, i = 0, j = 0; n < b.Length; n++)
                {
                    if (n <= b[0])
                    {
                        b1[i++] = b[n];
                    }
                    else
                    {
                        b2[j++] = b[n];
                    }
                }
            }
            #endregion
    
            #region 字符串加密解密 公开方法
            /// <summary>
            /// 字符串加密
            /// </summary>
            /// <param name="source">源字符串 明文</param>
            /// <param name="key">密匙</param>
            /// <returns>加密遇到错误将会返回原字符串</returns>
            public static string EncryptString(string source, string key)
            {
                string encryptString = string.Empty;
                byte[] d;
                byte[] n;
                try
                {
                    if (!CheckSourceValidate(source))
                    {
                        throw new Exception("source string too long");
                    }
                    //解析这个密钥
                    ResolveKey(key, out d, out n);
                    BigInteger biN = new BigInteger(n);
                    BigInteger biD = new BigInteger(d);
                    encryptString = EncryptString(source, biD, biN);
                }
                catch
                {
                    encryptString = source;
                }
                return encryptString;
            }
    
            /// <summary>
            /// 字符串解密
            /// </summary>
            /// <param name="encryptString">密文</param>
            /// <param name="key">密钥</param>
            /// <returns>遇到解密失败将会返回原字符串</returns>
            public static string DecryptString(string encryptString, string key)
            {
                string source = string.Empty;
                byte[] e;
                byte[] n;
                try
                {
                    //解析这个密钥
                    ResolveKey(key, out e, out n);
                    BigInteger biE = new BigInteger(e);
                    BigInteger biN = new BigInteger(n);
                    source = DecryptString(encryptString, biE, biN);
                }
                catch
                {
                    source = encryptString;
                }
                return source;
            }
            #endregion
    
            #region 字符串加密解密 私有  实现加解密的实现方法
            /// <summary>
            /// 用指定的密匙加密 
            /// </summary>
            /// <param name="source">明文</param>
            /// <param name="d">可以是RSACryptoServiceProvider生成的D</param>
            /// <param name="n">可以是RSACryptoServiceProvider生成的Modulus</param>
            /// <returns>返回密文</returns>
            private static string EncryptString(string source, BigInteger d, BigInteger n)
            {
                int len = source.Length;
                int len1 = 0;
                int blockLen = 0;
                if ((len % 128) == 0)
                    len1 = len / 128;
                else
                    len1 = len / 128 + 1;
                string block = "";
                StringBuilder result = new StringBuilder();
                for (int i = 0; i < len1; i++)
                {
                    if (len >= 128)
                        blockLen = 128;
                    else
                        blockLen = len;
                    block = source.Substring(i * 128, blockLen);
                    byte[] oText = System.Text.Encoding.Default.GetBytes(block);
                    BigInteger biText = new BigInteger(oText);
                    BigInteger biEnText = biText.modPow(d, n);
                    string temp = biEnText.ToHexString();
                    result.Append(temp).Append("@");
                    len -= blockLen;
                }
                return result.ToString().TrimEnd('@');
            }
    
            /// <summary>
            /// 用指定的密匙加密 
            /// </summary>
            /// <param name="source">密文</param>
            /// <param name="e">可以是RSACryptoServiceProvider生成的Exponent</param>
            /// <param name="n">可以是RSACryptoServiceProvider生成的Modulus</param>
            /// <returns>返回明文</returns>
            private static string DecryptString(string encryptString, BigInteger e, BigInteger n)
            {
                StringBuilder result = new StringBuilder();
                string[] strarr1 = encryptString.Split(new char[] { '@' }, StringSplitOptions.RemoveEmptyEntries);
                for (int i = 0; i < strarr1.Length; i++)
                {
                    string block = strarr1[i];
                    BigInteger biText = new BigInteger(block, 16);
                    BigInteger biEnText = biText.modPow(e, n);
                    string temp = System.Text.Encoding.Default.GetString(biEnText.getBytes());
                    result.Append(temp);
                }
                return result.ToString();
            }
            #endregion
        }
    
    
        public class BigInteger
        {
            #region BigInteger
    
            // maximum length of the BigInteger in uint (4 bytes)
            // change this to suit the required level of precision.
    
            private const int maxLength = 70;
    
            // primes smaller than 2000 to test the generated prime number
    
            public static readonly int[] primesBelow2000 = {
            2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
            101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
        211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293,
        307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397,
        401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499,
        503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599,
        601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691,
        701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797,
        809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887,
        907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997,
        1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097,
        1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193,
        1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297,
        1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399,
        1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499,
        1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597,
        1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699,
        1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789,
        1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889,
        1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999 };
    
    
            private uint[] data = null;             // stores bytes from the Big Integer
            public int dataLength;                 // number of actual chars used
    
    
            //***********************************************************************
            // Constructor (Default value for BigInteger is 0
            //***********************************************************************
    
            public BigInteger()
            {
                data = new uint[maxLength];
                dataLength = 1;
            }
    
    
            //***********************************************************************
            // Constructor (Default value provided by long)
            //***********************************************************************
    
            public BigInteger(long value)
            {
                data = new uint[maxLength];
                long tempVal = value;
    
                // copy bytes from long to BigInteger without any assumption of
                // the length of the long datatype
    
                dataLength = 0;
                while (value != 0 && dataLength < maxLength)
                {
                    data[dataLength] = (uint)(value & 0xFFFFFFFF);
                    value >>= 32;
                    dataLength++;
                }
    
                if (tempVal > 0)         // overflow check for +ve value
                {
                    if (value != 0 || (data[maxLength - 1] & 0x80000000) != 0)
                        throw (new ArithmeticException("Positive overflow in constructor."));
                }
                else if (tempVal < 0)    // underflow check for -ve value
                {
                    if (value != -1 || (data[dataLength - 1] & 0x80000000) == 0)
                        throw (new ArithmeticException("Negative underflow in constructor."));
                }
    
                if (dataLength == 0)
                    dataLength = 1;
            }
    
    
            //***********************************************************************
            // Constructor (Default value provided by ulong)
            //***********************************************************************
    
            public BigInteger(ulong value)
            {
                data = new uint[maxLength];
    
                // copy bytes from ulong to BigInteger without any assumption of
                // the length of the ulong datatype
    
                dataLength = 0;
                while (value != 0 && dataLength < maxLength)
                {
                    data[dataLength] = (uint)(value & 0xFFFFFFFF);
                    value >>= 32;
                    dataLength++;
                }
    
                if (value != 0 || (data[maxLength - 1] & 0x80000000) != 0)
                    throw (new ArithmeticException("Positive overflow in constructor."));
    
                if (dataLength == 0)
                    dataLength = 1;
            }
    
    
    
            //***********************************************************************
            // Constructor (Default value provided by BigInteger)
            //***********************************************************************
    
            public BigInteger(BigInteger bi)
            {
                data = new uint[maxLength];
    
                dataLength = bi.dataLength;
    
                for (int i = 0; i < dataLength; i++)
                    data[i] = bi.data[i];
            }
    
    
            //***********************************************************************
            // Constructor (Default value provided by a string of digits of the
            //              specified base)
            //
            // Example (base 10)
            // -----------------
            // To initialize "a" with the default value of 1234 in base 10
            //      BigInteger a = new BigInteger("1234", 10)
            //
            // To initialize "a" with the default value of -1234
            //      BigInteger a = new BigInteger("-1234", 10)
            //
            // Example (base 16)
            // -----------------
            // To initialize "a" with the default value of 0x1D4F in base 16
            //      BigInteger a = new BigInteger("1D4F", 16)
            //
            // To initialize "a" with the default value of -0x1D4F
            //      BigInteger a = new BigInteger("-1D4F", 16)
            //
            // Note that string values are specified in the <sign><magnitude>
            // format.
            //
            //***********************************************************************
    
            public BigInteger(string value, int radix)
            {
                BigInteger multiplier = new BigInteger(1);
                BigInteger result = new BigInteger();
                value = (value.ToUpper()).Trim();
                int limit = 0;
    
                if (value[0] == '-')
                    limit = 1;
    
                for (int i = value.Length - 1; i >= limit; i--)
                {
                    int posVal = (int)value[i];
    
                    if (posVal >= '0' && posVal <= '9')
                        posVal -= '0';
                    else if (posVal >= 'A' && posVal <= 'Z')
                        posVal = (posVal - 'A') + 10;
                    else
                        posVal = 9999999;       // arbitrary large
    
    
                    if (posVal >= radix)
                        throw (new ArithmeticException("Invalid string in constructor."));
                    else
                    {
                        if (value[0] == '-')
                            posVal = -posVal;
    
                        result = result + (multiplier * posVal);
    
                        if ((i - 1) >= limit)
                            multiplier = multiplier * radix;
                    }
                }
    
                if (value[0] == '-')     // negative values
                {
                    if ((result.data[maxLength - 1] & 0x80000000) == 0)
                        throw (new ArithmeticException("Negative underflow in constructor."));
                }
                else    // positive values
                {
                    if ((result.data[maxLength - 1] & 0x80000000) != 0)
                        throw (new ArithmeticException("Positive overflow in constructor."));
                }
    
                data = new uint[maxLength];
                for (int i = 0; i < result.dataLength; i++)
                    data[i] = result.data[i];
    
                dataLength = result.dataLength;
            }
    
    
            //***********************************************************************
            // Constructor (Default value provided by an array of bytes)
            //
            // The lowest index of the input byte array (i.e [0]) should contain the
            // most significant byte of the number, and the highest index should
            // contain the least significant byte.
            //
            // E.g.
            // To initialize "a" with the default value of 0x1D4F in base 16
            //      byte[] temp = { 0x1D, 0x4F };
            //      BigInteger a = new BigInteger(temp)
            //
            // Note that this method of initialization does not allow the
            // sign to be specified.
            //
            //***********************************************************************
    
            public BigInteger(byte[] inData)
            {
                dataLength = inData.Length >> 2;
    
                int leftOver = inData.Length & 0x3;
                if (leftOver != 0)         // length not multiples of 4
                    dataLength++;
    
    
                if (dataLength > maxLength)
                    throw (new ArithmeticException("Byte overflow in constructor."));
    
                data = new uint[maxLength];
    
                for (int i = inData.Length - 1, j = 0; i >= 3; i -= 4, j++)
                {
                    data[j] = (uint)((inData[i - 3] << 24) + (inData[i - 2] << 16) +
                                     (inData[i - 1] << 8) + inData[i]);
                }
    
                if (leftOver == 1)
                    data[dataLength - 1] = (uint)inData[0];
                else if (leftOver == 2)
                    data[dataLength - 1] = (uint)((inData[0] << 8) + inData[1]);
                else if (leftOver == 3)
                    data[dataLength - 1] = (uint)((inData[0] << 16) + (inData[1] << 8) + inData[2]);
    
    
                while (dataLength > 1 && data[dataLength - 1] == 0)
                    dataLength--;
    
                //Console.WriteLine("Len = " + dataLength);
            }
    
    
            //***********************************************************************
            // Constructor (Default value provided by an array of bytes of the
            // specified length.)
            //***********************************************************************
    
            public BigInteger(byte[] inData, int inLen)
            {
                dataLength = inLen >> 2;
    
                int leftOver = inLen & 0x3;
                if (leftOver != 0)         // length not multiples of 4
                    dataLength++;
    
                if (dataLength > maxLength || inLen > inData.Length)
                    throw (new ArithmeticException("Byte overflow in constructor."));
    
    
                data = new uint[maxLength];
    
                for (int i = inLen - 1, j = 0; i >= 3; i -= 4, j++)
                {
                    data[j] = (uint)((inData[i - 3] << 24) + (inData[i - 2] << 16) +
                                     (inData[i - 1] << 8) + inData[i]);
                }
    
                if (leftOver == 1)
                    data[dataLength - 1] = (uint)inData[0];
                else if (leftOver == 2)
                    data[dataLength - 1] = (uint)((inData[0] << 8) + inData[1]);
                else if (leftOver == 3)
                    data[dataLength - 1] = (uint)((inData[0] << 16) + (inData[1] << 8) + inData[2]);
    
    
                if (dataLength == 0)
                    dataLength = 1;
    
                while (dataLength > 1 && data[dataLength - 1] == 0)
                    dataLength--;
    
                //Console.WriteLine("Len = " + dataLength);
            }
    
    
            //***********************************************************************
            // Constructor (Default value provided by an array of unsigned integers)
            //*********************************************************************
    
            public BigInteger(uint[] inData)
            {
                dataLength = inData.Length;
    
                if (dataLength > maxLength)
                    throw (new ArithmeticException("Byte overflow in constructor."));
    
                data = new uint[maxLength];
    
                for (int i = dataLength - 1, j = 0; i >= 0; i--, j++)
                    data[j] = inData[i];
    
                while (dataLength > 1 && data[dataLength - 1] == 0)
                    dataLength--;
    
                //Console.WriteLine("Len = " + dataLength);
            }
    
    
            //***********************************************************************
            // Overloading of the typecast operator.
            // For BigInteger bi = 10;
            //***********************************************************************
    
            public static implicit operator BigInteger(long value)
            {
                return (new BigInteger(value));
            }
    
            public static implicit operator BigInteger(ulong value)
            {
                return (new BigInteger(value));
            }
    
            public static implicit operator BigInteger(int value)
            {
                return (new BigInteger((long)value));
            }
    
            public static implicit operator BigInteger(uint value)
            {
                return (new BigInteger((ulong)value));
            }
    
    
            //***********************************************************************
            // Overloading of addition operator
            //***********************************************************************
    
            public static BigInteger operator +(BigInteger bi1, BigInteger bi2)
            {
                BigInteger result = new BigInteger();
    
                result.dataLength = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;
    
                long carry = 0;
                for (int i = 0; i < result.dataLength; i++)
                {
                    long sum = (long)bi1.data[i] + (long)bi2.data[i] + carry;
                    carry = sum >> 32;
                    result.data[i] = (uint)(sum & 0xFFFFFFFF);
                }
    
                if (carry != 0 && result.dataLength < maxLength)
                {
                    result.data[result.dataLength] = (uint)(carry);
                    result.dataLength++;
                }
    
                while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                    result.dataLength--;
    
    
                // overflow check
                int lastPos = maxLength - 1;
                if ((bi1.data[lastPos] & 0x80000000) == (bi2.data[lastPos] & 0x80000000) &&
                   (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))
                {
                    throw (new ArithmeticException());
                }
    
                return result;
            }
    
    
            //***********************************************************************
            // Overloading of the unary ++ operator
            //***********************************************************************
    
            public static BigInteger operator ++(BigInteger bi1)
            {
                BigInteger result = new BigInteger(bi1);
    
                long val, carry = 1;
                int index = 0;
    
                while (carry != 0 && index < maxLength)
                {
                    val = (long)(result.data[index]);
                    val++;
    
                    result.data[index] = (uint)(val & 0xFFFFFFFF);
                    carry = val >> 32;
    
                    index++;
                }
    
                if (index > result.dataLength)
                    result.dataLength = index;
                else
                {
                    while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                        result.dataLength--;
                }
    
                // overflow check
                int lastPos = maxLength - 1;
    
                // overflow if initial value was +ve but ++ caused a sign
                // change to negative.
    
                if ((bi1.data[lastPos] & 0x80000000) == 0 &&
                   (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))
                {
                    throw (new ArithmeticException("Overflow in ++."));
                }
                return result;
            }
    
    
            //***********************************************************************
            // Overloading of subtraction operator
            //***********************************************************************
    
            public static BigInteger operator -(BigInteger bi1, BigInteger bi2)
            {
                BigInteger result = new BigInteger();
    
                result.dataLength = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;
    
                long carryIn = 0;
                for (int i = 0; i < result.dataLength; i++)
                {
                    long diff;
    
                    diff = (long)bi1.data[i] - (long)bi2.data[i] - carryIn;
                    result.data[i] = (uint)(diff & 0xFFFFFFFF);
    
                    if (diff < 0)
                        carryIn = 1;
                    else
                        carryIn = 0;
                }
    
                // roll over to negative
                if (carryIn != 0)
                {
                    for (int i = result.dataLength; i < maxLength; i++)
                        result.data[i] = 0xFFFFFFFF;
                    result.dataLength = maxLength;
                }
    
                // fixed in v1.03 to give correct datalength for a - (-b)
                while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                    result.dataLength--;
    
                // overflow check
    
                int lastPos = maxLength - 1;
                if ((bi1.data[lastPos] & 0x80000000) != (bi2.data[lastPos] & 0x80000000) &&
                   (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))
                {
                    throw (new ArithmeticException());
                }
    
                return result;
            }
    
    
            //***********************************************************************
            // Overloading of the unary -- operator
            //***********************************************************************
    
            public static BigInteger operator --(BigInteger bi1)
            {
                BigInteger result = new BigInteger(bi1);
    
                long val;
                bool carryIn = true;
                int index = 0;
    
                while (carryIn && index < maxLength)
                {
                    val = (long)(result.data[index]);
                    val--;
    
                    result.data[index] = (uint)(val & 0xFFFFFFFF);
    
                    if (val >= 0)
                        carryIn = false;
    
                    index++;
                }
    
                if (index > result.dataLength)
                    result.dataLength = index;
    
                while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                    result.dataLength--;
    
                // overflow check
                int lastPos = maxLength - 1;
    
                // overflow if initial value was -ve but -- caused a sign
                // change to positive.
    
                if ((bi1.data[lastPos] & 0x80000000) != 0 &&
                   (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))
                {
                    throw (new ArithmeticException("Underflow in --."));
                }
    
                return result;
            }
    
    
            //***********************************************************************
            // Overloading of multiplication operator
            //***********************************************************************
    
            public static BigInteger operator *(BigInteger bi1, BigInteger bi2)
            {
                int lastPos = maxLength - 1;
                bool bi1Neg = false, bi2Neg = false;
    
                // take the absolute value of the inputs
                try
                {
                    if ((bi1.data[lastPos] & 0x80000000) != 0)     // bi1 negative
                    {
                        bi1Neg = true; bi1 = -bi1;
                    }
                    if ((bi2.data[lastPos] & 0x80000000) != 0)     // bi2 negative
                    {
                        bi2Neg = true; bi2 = -bi2;
                    }
                }
                catch (Exception) { }
    
                BigInteger result = new BigInteger();
    
                // multiply the absolute values
                try
                {
                    for (int i = 0; i < bi1.dataLength; i++)
                    {
                        if (bi1.data[i] == 0) continue;
    
                        ulong mcarry = 0;
                        for (int j = 0, k = i; j < bi2.dataLength; j++, k++)
                        {
                            // k = i + j
                            ulong val = ((ulong)bi1.data[i] * (ulong)bi2.data[j]) +
                                         (ulong)result.data[k] + mcarry;
    
                            result.data[k] = (uint)(val & 0xFFFFFFFF);
                            mcarry = (val >> 32);
                        }
    
                        if (mcarry != 0)
                            result.data[i + bi2.dataLength] = (uint)mcarry;
                    }
                }
                catch (Exception)
                {
                    throw (new ArithmeticException("Multiplication overflow."));
                }
    
    
                result.dataLength = bi1.dataLength + bi2.dataLength;
                if (result.dataLength > maxLength)
                    result.dataLength = maxLength;
    
                while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                    result.dataLength--;
    
                // overflow check (result is -ve)
                if ((result.data[lastPos] & 0x80000000) != 0)
                {
                    if (bi1Neg != bi2Neg && result.data[lastPos] == 0x80000000)    // different sign
                    {
                        // handle the special case where multiplication produces
                        // a max negative number in 2's complement.
    
                        if (result.dataLength == 1)
                            return result;
                        else
                        {
                            bool isMaxNeg = true;
                            for (int i = 0; i < result.dataLength - 1 && isMaxNeg; i++)
                            {
                                if (result.data[i] != 0)
                                    isMaxNeg = false;
                            }
    
                            if (isMaxNeg)
                                return result;
                        }
                    }
    
                    throw (new ArithmeticException("Multiplication overflow."));
                }
    
                // if input has different signs, then result is -ve
                if (bi1Neg != bi2Neg)
                    return -result;
    
                return result;
            }
    
    
    
            //***********************************************************************
            // Overloading of unary << operators
            //***********************************************************************
    
            public static BigInteger operator <<(BigInteger bi1, int shiftVal)
            {
                BigInteger result = new BigInteger(bi1);
                result.dataLength = shiftLeft(result.data, shiftVal);
    
                return result;
            }
    
    
            // least significant bits at lower part of buffer
    
            private static int shiftLeft(uint[] buffer, int shiftVal)
            {
                int shiftAmount = 32;
                int bufLen = buffer.Length;
    
                while (bufLen > 1 && buffer[bufLen - 1] == 0)
                    bufLen--;
    
                for (int count = shiftVal; count > 0;)
                {
                    if (count < shiftAmount)
                        shiftAmount = count;
    
                    //Console.WriteLine("shiftAmount = {0}", shiftAmount);
    
                    ulong carry = 0;
                    for (int i = 0; i < bufLen; i++)
                    {
                        ulong val = ((ulong)buffer[i]) << shiftAmount;
                        val |= carry;
    
                        buffer[i] = (uint)(val & 0xFFFFFFFF);
                        carry = val >> 32;
                    }
    
                    if (carry != 0)
                    {
                        if (bufLen + 1 <= buffer.Length)
                        {
                            buffer[bufLen] = (uint)carry;
                            bufLen++;
                        }
                    }
                    count -= shiftAmount;
                }
                return bufLen;
            }
    
    
            //***********************************************************************
            // Overloading of unary >> operators
            //***********************************************************************
    
            public static BigInteger operator >>(BigInteger bi1, int shiftVal)
            {
                BigInteger result = new BigInteger(bi1);
                result.dataLength = shiftRight(result.data, shiftVal);
    
    
                if ((bi1.data[maxLength - 1] & 0x80000000) != 0) // negative
                {
                    for (int i = maxLength - 1; i >= result.dataLength; i--)
                        result.data[i] = 0xFFFFFFFF;
    
                    uint mask = 0x80000000;
                    for (int i = 0; i < 32; i++)
                    {
                        if ((result.data[result.dataLength - 1] & mask) != 0)
                            break;
    
                        result.data[result.dataLength - 1] |= mask;
                        mask >>= 1;
                    }
                    result.dataLength = maxLength;
                }
    
                return result;
            }
    
    
            private static int shiftRight(uint[] buffer, int shiftVal)
            {
                int shiftAmount = 32;
                int invShift = 0;
                int bufLen = buffer.Length;
    
                while (bufLen > 1 && buffer[bufLen - 1] == 0)
                    bufLen--;
    
                //Console.WriteLine("bufLen = " + bufLen + " buffer.Length = " + buffer.Length);
    
                for (int count = shiftVal; count > 0;)
                {
                    if (count < shiftAmount)
                    {
                        shiftAmount = count;
                        invShift = 32 - shiftAmount;
                    }
    
                    //Console.WriteLine("shiftAmount = {0}", shiftAmount);
    
                    ulong carry = 0;
                    for (int i = bufLen - 1; i >= 0; i--)
                    {
                        ulong val = ((ulong)buffer[i]) >> shiftAmount;
                        val |= carry;
    
                        carry = ((ulong)buffer[i]) << invShift;
                        buffer[i] = (uint)(val);
                    }
    
                    count -= shiftAmount;
                }
    
                while (bufLen > 1 && buffer[bufLen - 1] == 0)
                    bufLen--;
    
                return bufLen;
            }
    
    
            //***********************************************************************
            // Overloading of the NOT operator (1's complement)
            //***********************************************************************
    
            public static BigInteger operator ~(BigInteger bi1)
            {
                BigInteger result = new BigInteger(bi1);
    
                for (int i = 0; i < maxLength; i++)
                    result.data[i] = (uint)(~(bi1.data[i]));
    
                result.dataLength = maxLength;
    
                while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                    result.dataLength--;
    
                return result;
            }
    
    
            //***********************************************************************
            // Overloading of the NEGATE operator (2's complement)
            //***********************************************************************
    
            public static BigInteger operator -(BigInteger bi1)
            {
                // handle neg of zero separately since it'll cause an overflow
                // if we proceed.
    
                if (bi1.dataLength == 1 && bi1.data[0] == 0)
                    return (new BigInteger());
    
                BigInteger result = new BigInteger(bi1);
    
                // 1's complement
                for (int i = 0; i < maxLength; i++)
                    result.data[i] = (uint)(~(bi1.data[i]));
    
                // add one to result of 1's complement
                long val, carry = 1;
                int index = 0;
    
                while (carry != 0 && index < maxLength)
                {
                    val = (long)(result.data[index]);
                    val++;
    
                    result.data[index] = (uint)(val & 0xFFFFFFFF);
                    carry = val >> 32;
    
                    index++;
                }
    
                if ((bi1.data[maxLength - 1] & 0x80000000) == (result.data[maxLength - 1] & 0x80000000))
                    throw (new ArithmeticException("Overflow in negation.
    "));
    
                result.dataLength = maxLength;
    
                while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                    result.dataLength--;
                return result;
            }
    
    
            //***********************************************************************
            // Overloading of equality operator
            //***********************************************************************
    
            public static bool operator ==(BigInteger bi1, BigInteger bi2)
            {
                return bi1.Equals(bi2);
            }
    
    
            public static bool operator !=(BigInteger bi1, BigInteger bi2)
            {
                return !(bi1.Equals(bi2));
            }
    
    
            public override bool Equals(object o)
            {
                BigInteger bi = (BigInteger)o;
    
                if (this.dataLength != bi.dataLength)
                    return false;
    
                for (int i = 0; i < this.dataLength; i++)
                {
                    if (this.data[i] != bi.data[i])
                        return false;
                }
                return true;
            }
    
    
            public override int GetHashCode()
            {
                return this.ToString().GetHashCode();
            }
    
    
            //***********************************************************************
            // Overloading of inequality operator
            //***********************************************************************
    
            public static bool operator >(BigInteger bi1, BigInteger bi2)
            {
                int pos = maxLength - 1;
    
                // bi1 is negative, bi2 is positive
                if ((bi1.data[pos] & 0x80000000) != 0 && (bi2.data[pos] & 0x80000000) == 0)
                    return false;
    
                // bi1 is positive, bi2 is negative
                else if ((bi1.data[pos] & 0x80000000) == 0 && (bi2.data[pos] & 0x80000000) != 0)
                    return true;
    
                // same sign
                int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;
                for (pos = len - 1; pos >= 0 && bi1.data[pos] == bi2.data[pos]; pos--) ;
    
                if (pos >= 0)
                {
                    if (bi1.data[pos] > bi2.data[pos])
                        return true;
                    return false;
                }
                return false;
            }
    
    
            public static bool operator <(BigInteger bi1, BigInteger bi2)
            {
                int pos = maxLength - 1;
    
                // bi1 is negative, bi2 is positive
                if ((bi1.data[pos] & 0x80000000) != 0 && (bi2.data[pos] & 0x80000000) == 0)
                    return true;
    
                // bi1 is positive, bi2 is negative
                else if ((bi1.data[pos] & 0x80000000) == 0 && (bi2.data[pos] & 0x80000000) != 0)
                    return false;
    
                // same sign
                int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;
                for (pos = len - 1; pos >= 0 && bi1.data[pos] == bi2.data[pos]; pos--) ;
    
                if (pos >= 0)
                {
                    if (bi1.data[pos] < bi2.data[pos])
                        return true;
                    return false;
                }
                return false;
            }
    
    
            public static bool operator >=(BigInteger bi1, BigInteger bi2)
            {
                return (bi1 == bi2 || bi1 > bi2);
            }
    
    
            public static bool operator <=(BigInteger bi1, BigInteger bi2)
            {
                return (bi1 == bi2 || bi1 < bi2);
            }
    
    
            //***********************************************************************
            // Private function that supports the division of two numbers with
            // a divisor that has more than 1 digit.
            //
            // Algorithm taken from [1]
            //***********************************************************************
    
            private static void multiByteDivide(BigInteger bi1, BigInteger bi2,
                                                BigInteger outQuotient, BigInteger outRemainder)
            {
                uint[] result = new uint[maxLength];
    
                int remainderLen = bi1.dataLength + 1;
                uint[] remainder = new uint[remainderLen];
    
                uint mask = 0x80000000;
                uint val = bi2.data[bi2.dataLength - 1];
                int shift = 0, resultPos = 0;
    
                while (mask != 0 && (val & mask) == 0)
                {
                    shift++; mask >>= 1;
                }
    
                //Console.WriteLine("shift = {0}", shift);
                //Console.WriteLine("Before bi1 Len = {0}, bi2 Len = {1}", bi1.dataLength, bi2.dataLength);
    
                for (int i = 0; i < bi1.dataLength; i++)
                    remainder[i] = bi1.data[i];
                shiftLeft(remainder, shift);
                bi2 = bi2 << shift;
    
                /*
                Console.WriteLine("bi1 Len = {0}, bi2 Len = {1}", bi1.dataLength, bi2.dataLength);
                Console.WriteLine("dividend = " + bi1 + "
    divisor = " + bi2);
                for(int q = remainderLen - 1; q >= 0; q--)
                        Console.Write("{0:x2}", remainder[q]);
                Console.WriteLine();
                */
    
                int j = remainderLen - bi2.dataLength;
                int pos = remainderLen - 1;
    
                ulong firstDivisorByte = bi2.data[bi2.dataLength - 1];
                ulong secondDivisorByte = bi2.data[bi2.dataLength - 2];
    
                int divisorLen = bi2.dataLength + 1;
                uint[] dividendPart = new uint[divisorLen];
    
                while (j > 0)
                {
                    ulong dividend = ((ulong)remainder[pos] << 32) + (ulong)remainder[pos - 1];
                    //Console.WriteLine("dividend = {0}", dividend);
    
                    ulong q_hat = dividend / firstDivisorByte;
                    ulong r_hat = dividend % firstDivisorByte;
    
                    //Console.WriteLine("q_hat = {0:X}, r_hat = {1:X}", q_hat, r_hat);
    
                    bool done = false;
                    while (!done)
                    {
                        done = true;
    
                        if (q_hat == 0x100000000 ||
                           (q_hat * secondDivisorByte) > ((r_hat << 32) + remainder[pos - 2]))
                        {
                            q_hat--;
                            r_hat += firstDivisorByte;
    
                            if (r_hat < 0x100000000)
                                done = false;
                        }
                    }
    
                    for (int h = 0; h < divisorLen; h++)
                        dividendPart[h] = remainder[pos - h];
    
                    BigInteger kk = new BigInteger(dividendPart);
                    BigInteger ss = bi2 * (long)q_hat;
    
                    //Console.WriteLine("ss before = " + ss);
                    while (ss > kk)
                    {
                        q_hat--;
                        ss -= bi2;
                        //Console.WriteLine(ss);
                    }
                    BigInteger yy = kk - ss;
    
                    //Console.WriteLine("ss = " + ss);
                    //Console.WriteLine("kk = " + kk);
                    //Console.WriteLine("yy = " + yy);
    
                    for (int h = 0; h < divisorLen; h++)
                        remainder[pos - h] = yy.data[bi2.dataLength - h];
    
                    /*
                    Console.WriteLine("dividend = ");
                    for(int q = remainderLen - 1; q >= 0; q--)
                            Console.Write("{0:x2}", remainder[q]);
                    Console.WriteLine("
    ************ q_hat = {0:X}
    ", q_hat);
                    */
    
                    result[resultPos++] = (uint)q_hat;
    
                    pos--;
                    j--;
                }
    
                outQuotient.dataLength = resultPos;
                int y = 0;
                for (int x = outQuotient.dataLength - 1; x >= 0; x--, y++)
                    outQuotient.data[y] = result[x];
                for (; y < maxLength; y++)
                    outQuotient.data[y] = 0;
    
                while (outQuotient.dataLength > 1 && outQuotient.data[outQuotient.dataLength - 1] == 0)
                    outQuotient.dataLength--;
    
                if (outQuotient.dataLength == 0)
                    outQuotient.dataLength = 1;
    
                outRemainder.dataLength = shiftRight(remainder, shift);
    
                for (y = 0; y < outRemainder.dataLength; y++)
                    outRemainder.data[y] = remainder[y];
                for (; y < maxLength; y++)
                    outRemainder.data[y] = 0;
            }
    
    
            //***********************************************************************
            // Private function that supports the division of two numbers with
            // a divisor that has only 1 digit.
            //***********************************************************************
    
            private static void singleByteDivide(BigInteger bi1, BigInteger bi2,
                                                 BigInteger outQuotient, BigInteger outRemainder)
            {
                uint[] result = new uint[maxLength];
                int resultPos = 0;
    
                // copy dividend to reminder
                for (int i = 0; i < maxLength; i++)
                    outRemainder.data[i] = bi1.data[i];
                outRemainder.dataLength = bi1.dataLength;
    
                while (outRemainder.dataLength > 1 && outRemainder.data[outRemainder.dataLength - 1] == 0)
                    outRemainder.dataLength--;
    
                ulong divisor = (ulong)bi2.data[0];
                int pos = outRemainder.dataLength - 1;
                ulong dividend = (ulong)outRemainder.data[pos];
    
                //Console.WriteLine("divisor = " + divisor + " dividend = " + dividend);
                //Console.WriteLine("divisor = " + bi2 + "
    dividend = " + bi1);
    
                if (dividend >= divisor)
                {
                    ulong quotient = dividend / divisor;
                    result[resultPos++] = (uint)quotient;
    
                    outRemainder.data[pos] = (uint)(dividend % divisor);
                }
                pos--;
    
                while (pos >= 0)
                {
                    //Console.WriteLine(pos);
    
                    dividend = ((ulong)outRemainder.data[pos + 1] << 32) + (ulong)outRemainder.data[pos];
                    ulong quotient = dividend / divisor;
                    result[resultPos++] = (uint)quotient;
    
                    outRemainder.data[pos + 1] = 0;
                    outRemainder.data[pos--] = (uint)(dividend % divisor);
                    //Console.WriteLine(">>>> " + bi1);
                }
    
                outQuotient.dataLength = resultPos;
                int j = 0;
                for (int i = outQuotient.dataLength - 1; i >= 0; i--, j++)
                    outQuotient.data[j] = result[i];
                for (; j < maxLength; j++)
                    outQuotient.data[j] = 0;
    
                while (outQuotient.dataLength > 1 && outQuotient.data[outQuotient.dataLength - 1] == 0)
                    outQuotient.dataLength--;
    
                if (outQuotient.dataLength == 0)
                    outQuotient.dataLength = 1;
    
                while (outRemainder.dataLength > 1 && outRemainder.data[outRemainder.dataLength - 1] == 0)
                    outRemainder.dataLength--;
            }
    
    
            //***********************************************************************
            // Overloading of division operator
            //***********************************************************************
    
            public static BigInteger operator /(BigInteger bi1, BigInteger bi2)
            {
                BigInteger quotient = new BigInteger();
                BigInteger remainder = new BigInteger();
    
                int lastPos = maxLength - 1;
                bool divisorNeg = false, dividendNeg = false;
    
                if ((bi1.data[lastPos] & 0x80000000) != 0)     // bi1 negative
                {
                    bi1 = -bi1;
                    dividendNeg = true;
                }
                if ((bi2.data[lastPos] & 0x80000000) != 0)     // bi2 negative
                {
                    bi2 = -bi2;
                    divisorNeg = true;
                }
    
                if (bi1 < bi2)
                {
                    return quotient;
                }
    
                else
                {
                    if (bi2.dataLength == 1)
                        singleByteDivide(bi1, bi2, quotient, remainder);
                    else
                        multiByteDivide(bi1, bi2, quotient, remainder);
    
                    if (dividendNeg != divisorNeg)
                        return -quotient;
    
                    return quotient;
                }
            }
    
    
            //***********************************************************************
            // Overloading of modulus operator
            //***********************************************************************
    
            public static BigInteger operator %(BigInteger bi1, BigInteger bi2)
            {
                BigInteger quotient = new BigInteger();
                BigInteger remainder = new BigInteger(bi1);
    
                int lastPos = maxLength - 1;
                bool dividendNeg = false;
    
                if ((bi1.data[lastPos] & 0x80000000) != 0)     // bi1 negative
                {
                    bi1 = -bi1;
                    dividendNeg = true;
                }
                if ((bi2.data[lastPos] & 0x80000000) != 0)     // bi2 negative
                    bi2 = -bi2;
    
                if (bi1 < bi2)
                {
                    return remainder;
                }
    
                else
                {
                    if (bi2.dataLength == 1)
                        singleByteDivide(bi1, bi2, quotient, remainder);
                    else
                        multiByteDivide(bi1, bi2, quotient, remainder);
    
                    if (dividendNeg)
                        return -remainder;
    
                    return remainder;
                }
            }
    
    
            //***********************************************************************
            // Overloading of bitwise AND operator
            //***********************************************************************
    
            public static BigInteger operator &(BigInteger bi1, BigInteger bi2)
            {
                BigInteger result = new BigInteger();
    
                int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;
    
                for (int i = 0; i < len; i++)
                {
                    uint sum = (uint)(bi1.data[i] & bi2.data[i]);
                    result.data[i] = sum;
                }
    
                result.dataLength = maxLength;
    
                while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                    result.dataLength--;
    
                return result;
            }
    
    
            //***********************************************************************
            // Overloading of bitwise OR operator
            //***********************************************************************
    
            public static BigInteger operator |(BigInteger bi1, BigInteger bi2)
            {
                BigInteger result = new BigInteger();
    
                int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;
    
                for (int i = 0; i < len; i++)
                {
                    uint sum = (uint)(bi1.data[i] | bi2.data[i]);
                    result.data[i] = sum;
                }
    
                result.dataLength = maxLength;
    
                while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                    result.dataLength--;
    
                return result;
            }
    
    
            //***********************************************************************
            // Overloading of bitwise XOR operator
            //***********************************************************************
    
            public static BigInteger operator ^(BigInteger bi1, BigInteger bi2)
            {
                BigInteger result = new BigInteger();
    
                int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;
    
                for (int i = 0; i < len; i++)
                {
                    uint sum = (uint)(bi1.data[i] ^ bi2.data[i]);
                    result.data[i] = sum;
                }
    
                result.dataLength = maxLength;
    
                while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                    result.dataLength--;
    
                return result;
            }
    
    
            //***********************************************************************
            // Returns max(this, bi)
            //***********************************************************************
    
            public BigInteger max(BigInteger bi)
            {
                if (this > bi)
                    return (new BigInteger(this));
                else
                    return (new BigInteger(bi));
            }
    
    
            //***********************************************************************
            // Returns min(this, bi)
            //***********************************************************************
    
            public BigInteger min(BigInteger bi)
            {
                if (this < bi)
                    return (new BigInteger(this));
                else
                    return (new BigInteger(bi));
    
            }
    
    
            //***********************************************************************
            // Returns the absolute value
            //***********************************************************************
    
            public BigInteger abs()
            {
                if ((this.data[maxLength - 1] & 0x80000000) != 0)
                    return (-this);
                else
                    return (new BigInteger(this));
            }
    
    
            //***********************************************************************
            // Returns a string representing the BigInteger in base 10.
            //***********************************************************************
    
            public override string ToString()
            {
                return ToString(10);
            }
    
    
            //***********************************************************************
            // Returns a string representing the BigInteger in sign-and-magnitude
            // format in the specified radix.
            //
            // Example
            // -------
            // If the value of BigInteger is -255 in base 10, then
            // ToString(16) returns "-FF"
            //
            //***********************************************************************
    
            public string ToString(int radix)
            {
                if (radix < 2 || radix > 36)
                    throw (new ArgumentException("Radix must be >= 2 and <= 36"));
    
                string charSet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
                string result = "";
    
                BigInteger a = this;
    
                bool negative = false;
                if ((a.data[maxLength - 1] & 0x80000000) != 0)
                {
                    negative = true;
                    try
                    {
                        a = -a;
                    }
                    catch (Exception) { }
                }
    
                BigInteger quotient = new BigInteger();
                BigInteger remainder = new BigInteger();
                BigInteger biRadix = new BigInteger(radix);
    
                if (a.dataLength == 1 && a.data[0] == 0)
                    result = "0";
                else
                {
                    while (a.dataLength > 1 || (a.dataLength == 1 && a.data[0] != 0))
                    {
                        singleByteDivide(a, biRadix, quotient, remainder);
    
                        if (remainder.data[0] < 10)
                            result = remainder.data[0] + result;
                        else
                            result = charSet[(int)remainder.data[0] - 10] + result;
    
                        a = quotient;
                    }
                    if (negative)
                        result = "-" + result;
                }
    
                return result;
            }
    
    
            //***********************************************************************
            // Returns a hex string showing the contains of the BigInteger
            //
            // Examples
            // -------
            // 1) If the value of BigInteger is 255 in base 10, then
            //    ToHexString() returns "FF"
            //
            // 2) If the value of BigInteger is -255 in base 10, then
            //    ToHexString() returns ".....FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF01",
            //    which is the 2's complement representation of -255.
            //
            //***********************************************************************
    
            public string ToHexString()
            {
                string result = data[dataLength - 1].ToString("X");
    
                for (int i = dataLength - 2; i >= 0; i--)
                {
                    result += data[i].ToString("X8");
                }
    
                return result;
            }
    
    
    
            //***********************************************************************
            // Modulo Exponentiation
            //***********************************************************************
    
            public BigInteger modPow(BigInteger exp, BigInteger n)
            {
                if ((exp.data[maxLength - 1] & 0x80000000) != 0)
                    throw (new ArithmeticException("Positive exponents only."));
    
                BigInteger resultNum = 1;
                BigInteger tempNum;
                bool thisNegative = false;
    
                if ((this.data[maxLength - 1] & 0x80000000) != 0)   // negative this
                {
                    tempNum = -this % n;
                    thisNegative = true;
                }
                else
                    tempNum = this % n;  // ensures (tempNum * tempNum) < b^(2k)
    
                if ((n.data[maxLength - 1] & 0x80000000) != 0)   // negative n
                    n = -n;
    
                // calculate constant = b^(2k) / m
                BigInteger constant = new BigInteger();
    
                int i = n.dataLength << 1;
                constant.data[i] = 0x00000001;
                constant.dataLength = i + 1;
    
                constant = constant / n;
                int totalBits = exp.bitCount();
                int count = 0;
    
                // perform squaring and multiply exponentiation
                for (int pos = 0; pos < exp.dataLength; pos++)
                {
                    uint mask = 0x01;
                    //Console.WriteLine("pos = " + pos);
    
                    for (int index = 0; index < 32; index++)
                    {
                        if ((exp.data[pos] & mask) != 0)
                            resultNum = BarrettReduction(resultNum * tempNum, n, constant);
    
                        mask <<= 1;
    
                        tempNum = BarrettReduction(tempNum * tempNum, n, constant);
    
    
                        if (tempNum.dataLength == 1 && tempNum.data[0] == 1)
                        {
                            if (thisNegative && (exp.data[0] & 0x1) != 0)    //odd exp
                                return -resultNum;
                            return resultNum;
                        }
                        count++;
                        if (count == totalBits)
                            break;
                    }
                }
    
                if (thisNegative && (exp.data[0] & 0x1) != 0)    //odd exp
                    return -resultNum;
    
                return resultNum;
            }
    
    
    
            //***********************************************************************
            // Fast calculation of modular reduction using Barrett's reduction.
            // Requires x < b^(2k), where b is the base.  In this case, base is
            // 2^32 (uint).
            //
            // Reference [4]
            //***********************************************************************
    
            private BigInteger BarrettReduction(BigInteger x, BigInteger n, BigInteger constant)
            {
                int k = n.dataLength,
                    kPlusOne = k + 1,
                    kMinusOne = k - 1;
    
                BigInteger q1 = new BigInteger();
    
                // q1 = x / b^(k-1)
                for (int i = kMinusOne, j = 0; i < x.dataLength; i++, j++)
                    q1.data[j] = x.data[i];
                q1.dataLength = x.dataLength - kMinusOne;
                if (q1.dataLength <= 0)
                    q1.dataLength = 1;
    
    
                BigInteger q2 = q1 * constant;
                BigInteger q3 = new BigInteger();
    
                // q3 = q2 / b^(k+1)
                for (int i = kPlusOne, j = 0; i < q2.dataLength; i++, j++)
                    q3.data[j] = q2.data[i];
                q3.dataLength = q2.dataLength - kPlusOne;
                if (q3.dataLength <= 0)
                    q3.dataLength = 1;
    
    
                // r1 = x mod b^(k+1)
                // i.e. keep the lowest (k+1) words
                BigInteger r1 = new BigInteger();
                int lengthToCopy = (x.dataLength > kPlusOne) ? kPlusOne : x.dataLength;
                for (int i = 0; i < lengthToCopy; i++)
                    r1.data[i] = x.data[i];
                r1.dataLength = lengthToCopy;
    
    
                // r2 = (q3 * n) mod b^(k+1)
                // partial multiplication of q3 and n
    
                BigInteger r2 = new BigInteger();
                for (int i = 0; i < q3.dataLength; i++)
                {
                    if (q3.data[i] == 0) continue;
    
                    ulong mcarry = 0;
                    int t = i;
                    for (int j = 0; j < n.dataLength && t < kPlusOne; j++, t++)
                    {
                        // t = i + j
                        ulong val = ((ulong)q3.data[i] * (ulong)n.data[j]) +
                                     (ulong)r2.data[t] + mcarry;
    
                        r2.data[t] = (uint)(val & 0xFFFFFFFF);
                        mcarry = (val >> 32);
                    }
    
                    if (t < kPlusOne)
                        r2.data[t] = (uint)mcarry;
                }
                r2.dataLength = kPlusOne;
                while (r2.dataLength > 1 && r2.data[r2.dataLength - 1] == 0)
                    r2.dataLength--;
    
                r1 -= r2;
                if ((r1.data[maxLength - 1] & 0x80000000) != 0)        // negative
                {
                    BigInteger val = new BigInteger();
                    val.data[kPlusOne] = 0x00000001;
                    val.dataLength = kPlusOne + 1;
                    r1 += val;
                }
    
                while (r1 >= n)
                    r1 -= n;
    
                return r1;
            }
    
    
            //***********************************************************************
            // Returns gcd(this, bi)
            //***********************************************************************
    
            public BigInteger gcd(BigInteger bi)
            {
                BigInteger x;
                BigInteger y;
    
                if ((data[maxLength - 1] & 0x80000000) != 0)     // negative
                    x = -this;
                else
                    x = this;
    
                if ((bi.data[maxLength - 1] & 0x80000000) != 0)     // negative
                    y = -bi;
                else
                    y = bi;
    
                BigInteger g = y;
    
                while (x.dataLength > 1 || (x.dataLength == 1 && x.data[0] != 0))
                {
                    g = x;
                    x = y % x;
                    y = g;
                }
    
                return g;
            }
    
    
            //***********************************************************************
            // Populates "this" with the specified amount of random bits
            //***********************************************************************
    
            public void genRandomBits(int bits, Random rand)
            {
                int dwords = bits >> 5;
                int remBits = bits & 0x1F;
    
                if (remBits != 0)
                    dwords++;
    
                if (dwords > maxLength)
                    throw (new ArithmeticException("Number of required bits > maxLength."));
    
                for (int i = 0; i < dwords; i++)
                    data[i] = (uint)(rand.NextDouble() * 0x100000000);
    
                for (int i = dwords; i < maxLength; i++)
                    data[i] = 0;
    
                if (remBits != 0)
                {
                    uint mask = (uint)(0x01 << (remBits - 1));
                    data[dwords - 1] |= mask;
    
                    mask = (uint)(0xFFFFFFFF >> (32 - remBits));
                    data[dwords - 1] &= mask;
                }
                else
                    data[dwords - 1] |= 0x80000000;
    
                dataLength = dwords;
    
                if (dataLength == 0)
                    dataLength = 1;
            }
    
    
            //***********************************************************************
            // Returns the position of the most significant bit in the BigInteger.
            //
            // Eg.  The result is 0, if the value of BigInteger is 0...0000 0000
            //      The result is 1, if the value of BigInteger is 0...0000 0001
            //      The result is 2, if the value of BigInteger is 0...0000 0010
            //      The result is 2, if the value of BigInteger is 0...0000 0011
            //
            //***********************************************************************
    
            public int bitCount()
            {
                while (dataLength > 1 && data[dataLength - 1] == 0)
                    dataLength--;
    
                uint value = data[dataLength - 1];
                uint mask = 0x80000000;
                int bits = 32;
    
                while (bits > 0 && (value & mask) == 0)
                {
                    bits--;
                    mask >>= 1;
                }
                bits += ((dataLength - 1) << 5);
    
                return bits;
            }
    
    
            //***********************************************************************
            // Probabilistic prime test based on Fermat's little theorem
            //
            // for any a < p (p does not divide a) if
            //      a^(p-1) mod p != 1 then p is not prime.
            //
            // Otherwise, p is probably prime (pseudoprime to the chosen base).
            //
            // Returns
            // -------
            // True if "this" is a pseudoprime to randomly chosen
            // bases.  The number of chosen bases is given by the "confidence"
            // parameter.
            //
            // False if "this" is definitely NOT prime.
            //
            // Note - this method is fast but fails for Carmichael numbers except
            // when the randomly chosen base is a factor of the number.
            //
            //***********************************************************************
    
            public bool FermatLittleTest(int confidence)
            {
                BigInteger thisVal;
                if ((this.data[maxLength - 1] & 0x80000000) != 0)        // negative
                    thisVal = -this;
                else
                    thisVal = this;
    
                if (thisVal.dataLength == 1)
                {
                    // test small numbers
                    if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
                        return false;
                    else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
                        return true;
                }
    
                if ((thisVal.data[0] & 0x1) == 0)     // even numbers
                    return false;
    
                int bits = thisVal.bitCount();
                BigInteger a = new BigInteger();
                BigInteger p_sub1 = thisVal - (new BigInteger(1));
                Random rand = new Random();
    
                for (int round = 0; round < confidence; round++)
                {
                    bool done = false;
    
                    while (!done)        // generate a < n
                    {
                        int testBits = 0;
    
                        // make sure "a" has at least 2 bits
                        while (testBits < 2)
                            testBits = (int)(rand.NextDouble() * bits);
    
                        a.genRandomBits(testBits, rand);
    
                        int byteLen = a.dataLength;
    
                        // make sure "a" is not 0
                        if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
                            done = true;
                    }
    
                    // check whether a factor exists (fix for version 1.03)
                    BigInteger gcdTest = a.gcd(thisVal);
                    if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
                        return false;
    
                    // calculate a^(p-1) mod p
                    BigInteger expResult = a.modPow(p_sub1, thisVal);
    
                    int resultLen = expResult.dataLength;
    
                    // is NOT prime is a^(p-1) mod p != 1
    
                    if (resultLen > 1 || (resultLen == 1 && expResult.data[0] != 1))
                    {
                        //Console.WriteLine("a = " + a.ToString());
                        return false;
                    }
                }
    
                return true;
            }
    
    
            //***********************************************************************
            // Probabilistic prime test based on Rabin-Miller's
            //
            // for any p > 0 with p - 1 = 2^s * t
            //
            // p is probably prime (strong pseudoprime) if for any a < p,
            // 1) a^t mod p = 1 or
            // 2) a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
            //
            // Otherwise, p is composite.
            //
            // Returns
            // -------
            // True if "this" is a strong pseudoprime to randomly chosen
            // bases.  The number of chosen bases is given by the "confidence"
            // parameter.
            //
            // False if "this" is definitely NOT prime.
            //
            //***********************************************************************
    
            public bool RabinMillerTest(int confidence)
            {
                BigInteger thisVal;
                if ((this.data[maxLength - 1] & 0x80000000) != 0)        // negative
                    thisVal = -this;
                else
                    thisVal = this;
    
                if (thisVal.dataLength == 1)
                {
                    // test small numbers
                    if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
                        return false;
                    else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
                        return true;
                }
    
                if ((thisVal.data[0] & 0x1) == 0)     // even numbers
                    return false;
    
    
                // calculate values of s and t
                BigInteger p_sub1 = thisVal - (new BigInteger(1));
                int s = 0;
    
                for (int index = 0; index < p_sub1.dataLength; index++)
                {
                    uint mask = 0x01;
    
                    for (int i = 0; i < 32; i++)
                    {
                        if ((p_sub1.data[index] & mask) != 0)
                        {
                            index = p_sub1.dataLength;      // to break the outer loop
                            break;
                        }
                        mask <<= 1;
                        s++;
                    }
                }
    
                BigInteger t = p_sub1 >> s;
    
                int bits = thisVal.bitCount();
                BigInteger a = new BigInteger();
                Random rand = new Random();
    
                for (int round = 0; round < confidence; round++)
                {
                    bool done = false;
    
                    while (!done)        // generate a < n
                    {
                        int testBits = 0;
    
                        // make sure "a" has at least 2 bits
                        while (testBits < 2)
                            testBits = (int)(rand.NextDouble() * bits);
    
                        a.genRandomBits(testBits, rand);
    
                        int byteLen = a.dataLength;
    
                        // make sure "a" is not 0
                        if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
                            done = true;
                    }
    
                    // check whether a factor exists (fix for version 1.03)
                    BigInteger gcdTest = a.gcd(thisVal);
                    if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
                        return false;
    
                    BigInteger b = a.modPow(t, thisVal);
    
                    /*
                    Console.WriteLine("a = " + a.ToString(10));
                    Console.WriteLine("b = " + b.ToString(10));
                    Console.WriteLine("t = " + t.ToString(10));
                    Console.WriteLine("s = " + s);
                    */
    
                    bool result = false;
    
                    if (b.dataLength == 1 && b.data[0] == 1)         // a^t mod p = 1
                        result = true;
    
                    for (int j = 0; result == false && j < s; j++)
                    {
                        if (b == p_sub1)         // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
                        {
                            result = true;
                            break;
                        }
    
                        b = (b * b) % thisVal;
                    }
    
                    if (result == false)
                        return false;
                }
                return true;
            }
    
    
            //***********************************************************************
            // Probabilistic prime test based on Solovay-Strassen (Euler Criterion)
            //
            // p is probably prime if for any a < p (a is not multiple of p),
            // a^((p-1)/2) mod p = J(a, p)
            //
            // where J is the Jacobi symbol.
            //
            // Otherwise, p is composite.
            //
            // Returns
            // -------
            // True if "this" is a Euler pseudoprime to randomly chosen
            // bases.  The number of chosen bases is given by the "confidence"
            // parameter.
            //
            // False if "this" is definitely NOT prime.
            //
            //***********************************************************************
    
            public bool SolovayStrassenTest(int confidence)
            {
                BigInteger thisVal;
                if ((this.data[maxLength - 1] & 0x80000000) != 0)        // negative
                    thisVal = -this;
                else
                    thisVal = this;
    
                if (thisVal.dataLength == 1)
                {
                    // test small numbers
                    if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
                        return false;
                    else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
                        return true;
                }
    
                if ((thisVal.data[0] & 0x1) == 0)     // even numbers
                    return false;
    
    
                int bits = thisVal.bitCount();
                BigInteger a = new BigInteger();
                BigInteger p_sub1 = thisVal - 1;
                BigInteger p_sub1_shift = p_sub1 >> 1;
    
                Random rand = new Random();
    
                for (int round = 0; round < confidence; round++)
                {
                    bool done = false;
    
                    while (!done)        // generate a < n
                    {
                        int testBits = 0;
    
                        // make sure "a" has at least 2 bits
                        while (testBits < 2)
                            testBits = (int)(rand.NextDouble() * bits);
    
                        a.genRandomBits(testBits, rand);
    
                        int byteLen = a.dataLength;
    
                        // make sure "a" is not 0
                        if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
                            done = true;
                    }
    
                    // check whether a factor exists (fix for version 1.03)
                    BigInteger gcdTest = a.gcd(thisVal);
                    if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
                        return false;
    
                    // calculate a^((p-1)/2) mod p
    
                    BigInteger expResult = a.modPow(p_sub1_shift, thisVal);
                    if (expResult == p_sub1)
                        expResult = -1;
    
                    // calculate Jacobi symbol
                    BigInteger jacob = Jacobi(a, thisVal);
    
                    //Console.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10));
                    //Console.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10));
    
                    // if they are different then it is not prime
                    if (expResult != jacob)
                        return false;
                }
    
                return true;
            }
    
    
            //***********************************************************************
            // Implementation of the Lucas Strong Pseudo Prime test.
            //
            // Let n be an odd number with gcd(n,D) = 1, and n - J(D, n) = 2^s * d
            // with d odd and s >= 0.
            //
            // If Ud mod n = 0 or V2^r*d mod n = 0 for some 0 <= r < s, then n
            // is a strong Lucas pseudoprime with parameters (P, Q).  We select
            // P and Q based on Selfridge.
            //
            // Returns True if number is a strong Lucus pseudo prime.
            // Otherwise, returns False indicating that number is composite.
            //***********************************************************************
    
            public bool LucasStrongTest()
            {
                BigInteger thisVal;
                if ((this.data[maxLength - 1] & 0x80000000) != 0)        // negative
                    thisVal = -this;
                else
                    thisVal = this;
    
                if (thisVal.dataLength == 1)
                {
                    // test small numbers
                    if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
                        return false;
                    else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
                        return true;
                }
    
                if ((thisVal.data[0] & 0x1) == 0)     // even numbers
                    return false;
    
                return LucasStrongTestHelper(thisVal);
            }
    
    
            private bool LucasStrongTestHelper(BigInteger thisVal)
            {
                // Do the test (selects D based on Selfridge)
                // Let D be the first element of the sequence
                // 5, -7, 9, -11, 13, ... for which J(D,n) = -1
                // Let P = 1, Q = (1-D) / 4
    
                long D = 5, sign = -1, dCount = 0;
                bool done = false;
    
                while (!done)
                {
                    int Jresult = BigInteger.Jacobi(D, thisVal);
    
                    if (Jresult == -1)
                        done = true;    // J(D, this) = 1
                    else
                    {
                        if (Jresult == 0 && Math.Abs(D) < thisVal)       // divisor found
                            return false;
    
                        if (dCount == 20)
                        {
                            // check for square
                            BigInteger root = thisVal.sqrt();
                            if (root * root == thisVal)
                                return false;
                        }
    
                        //Console.WriteLine(D);
                        D = (Math.Abs(D) + 2) * sign;
                        sign = -sign;
                    }
                    dCount++;
                }
    
                long Q = (1 - D) >> 2;
    
                /*
                Console.WriteLine("D = " + D);
                Console.WriteLine("Q = " + Q);
                Console.WriteLine("(n,D) = " + thisVal.gcd(D));
                Console.WriteLine("(n,Q) = " + thisVal.gcd(Q));
                Console.WriteLine("J(D|n) = " + BigInteger.Jacobi(D, thisVal));
                */
    
                BigInteger p_add1 = thisVal + 1;
                int s = 0;
    
                for (int index = 0; index < p_add1.dataLength; index++)
                {
                    uint mask = 0x01;
    
                    for (int i = 0; i < 32; i++)
                    {
                        if ((p_add1.data[index] & mask) != 0)
                        {
                            index = p_add1.dataLength;      // to break the outer loop
                            break;
                        }
                        mask <<= 1;
                        s++;
                    }
                }
    
                BigInteger t = p_add1 >> s;
    
                // calculate constant = b^(2k) / m
                // for Barrett Reduction
                BigInteger constant = new BigInteger();
    
                int nLen = thisVal.dataLength << 1;
                constant.data[nLen] = 0x00000001;
                constant.dataLength = nLen + 1;
    
                constant = constant / thisVal;
    
                BigInteger[] lucas = LucasSequenceHelper(1, Q, t, thisVal, constant, 0);
                bool isPrime = false;
    
                if ((lucas[0].dataLength == 1 && lucas[0].data[0] == 0) ||
                   (lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
                {
                    // u(t) = 0 or V(t) = 0
                    isPrime = true;
                }
    
                for (int i = 1; i < s; i++)
                {
                    if (!isPrime)
                    {
                        // doubling of index
                        lucas[1] = thisVal.BarrettReduction(lucas[1] * lucas[1], thisVal, constant);
                        lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal;
    
                        //lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal;
    
                        if ((lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
                            isPrime = true;
                    }
    
                    lucas[2] = thisVal.BarrettReduction(lucas[2] * lucas[2], thisVal, constant);     //Q^k
                }
    
    
                if (isPrime)     // additional checks for composite numbers
                {
                    // If n is prime and gcd(n, Q) == 1, then
                    // Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n
    
                    BigInteger g = thisVal.gcd(Q);
                    if (g.dataLength == 1 && g.data[0] == 1)         // gcd(this, Q) == 1
                    {
                        if ((lucas[2].data[maxLength - 1] & 0x80000000) != 0)
                            lucas[2] += thisVal;
    
                        BigInteger temp = (Q * BigInteger.Jacobi(Q, thisVal)) % thisVal;
                        if ((temp.data[maxLength - 1] & 0x80000000) != 0)
                            temp += thisVal;
    
                        if (lucas[2] != temp)
                            isPrime = false;
                    }
                }
    
                return isPrime;
            }
    
    
            //***********************************************************************
            // Determines whether a number is probably prime, using the Rabin-Miller's
            // test.  Before applying the test, the number is tested for divisibility
            // by primes < 2000
            //
            // Returns true if number is probably prime.
            //***********************************************************************
    
            public bool isProbablePrime(int confidence)
            {
                BigInteger thisVal;
                if ((this.data[maxLength - 1] & 0x80000000) != 0)        // negative
                    thisVal = -this;
                else
                    thisVal = this;
    
    
                // test for divisibility by primes < 2000
                for (int p = 0; p < primesBelow2000.Length; p++)
                {
                    BigInteger divisor = primesBelow2000[p];
    
                    if (divisor >= thisVal)
                        break;
    
                    BigInteger resultNum = thisVal % divisor;
                    if (resultNum.IntValue() == 0)
                    {
                        /*
        Console.WriteLine("Not prime!  Divisible by {0}
    ",
                                          primesBelow2000[p]);
                        */
                        return false;
                    }
                }
    
                if (thisVal.RabinMillerTest(confidence))
                    return true;
                else
                {
                    //Console.WriteLine("Not prime!  Failed primality test
    ");
                    return false;
                }
            }
    
    
            //***********************************************************************
            // Determines whether this BigInteger is probably prime using a
            // combination of base 2 strong pseudoprime test and Lucas strong
            // pseudoprime test.
            //
            // The sequence of the primality test is as follows,
            //
            // 1) Trial divisions are carried out using prime numbers below 2000.
            //    if any of the primes divides this BigInteger, then it is not prime.
            //
            // 2) Perform base 2 strong pseudoprime test.  If this BigInteger is a
            //    base 2 strong pseudoprime, proceed on to the next step.
            //
            // 3) Perform strong Lucas pseudoprime test.
            //
            // Returns True if this BigInteger is both a base 2 strong pseudoprime
            // and a strong Lucas pseudoprime.
            //
            // For a detailed discussion of this primality test, see [6].
            //
            //***********************************************************************
    
            public bool isProbablePrime()
            {
                BigInteger thisVal;
                if ((this.data[maxLength - 1] & 0x80000000) != 0)        // negative
                    thisVal = -this;
                else
                    thisVal = this;
    
                if (thisVal.dataLength == 1)
                {
                    // test small numbers
                    if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
                        return false;
                    else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
                        return true;
                }
    
                if ((thisVal.data[0] & 0x1) == 0)     // even numbers
                    return false;
    
    
                // test for divisibility by primes < 2000
                for (int p = 0; p < primesBelow2000.Length; p++)
                {
                    BigInteger divisor = primesBelow2000[p];
    
                    if (divisor >= thisVal)
                        break;
    
                    BigInteger resultNum = thisVal % divisor;
                    if (resultNum.IntValue() == 0)
                    {
                        //Console.WriteLine("Not prime!  Divisible by {0}
    ",
                        //                  primesBelow2000[p]);
    
                        return false;
                    }
                }
    
                // Perform BASE 2 Rabin-Miller Test
    
                // calculate values of s and t
                BigInteger p_sub1 = thisVal - (new BigInteger(1));
                int s = 0;
    
                for (int index = 0; index < p_sub1.dataLength; index++)
                {
                    uint mask = 0x01;
    
                    for (int i = 0; i < 32; i++)
                    {
                        if ((p_sub1.data[index] & mask) != 0)
                        {
                            index = p_sub1.dataLength;      // to break the outer loop
                            break;
                        }
                        mask <<= 1;
                        s++;
                    }
                }
    
                BigInteger t = p_sub1 >> s;
    
                int bits = thisVal.bitCount();
                BigInteger a = 2;
    
                // b = a^t mod p
                BigInteger b = a.modPow(t, thisVal);
                bool result = false;
    
                if (b.dataLength == 1 && b.data[0] == 1)         // a^t mod p = 1
                    result = true;
    
                for (int j = 0; result == false && j < s; j++)
                {
                    if (b == p_sub1)         // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
                    {
                        result = true;
                        break;
                    }
    
                    b = (b * b) % thisVal;
                }
    
                // if number is strong pseudoprime to base 2, then do a strong lucas test
                if (result)
                    result = LucasStrongTestHelper(thisVal);
    
                return result;
            }
    
    
    
            //***********************************************************************
            // Returns the lowest 4 bytes of the BigInteger as an int.
            //***********************************************************************
    
            public int IntValue()
            {
                return (int)data[0];
            }
    
    
            //***********************************************************************
            // Returns the lowest 8 bytes of the BigInteger as a long.
            //***********************************************************************
    
            public long LongValue()
            {
                long val = 0;
    
                val = (long)data[0];
                try
                {       // exception if maxLength = 1
                    val |= (long)data[1] << 32;
                }
                catch (Exception)
                {
                    if ((data[0] & 0x80000000) != 0) // negative
                        val = (int)data[0];
                }
    
                return val;
            }
    
    
            //***********************************************************************
            // Computes the Jacobi Symbol for a and b.
            // Algorithm adapted from [3] and [4] with some optimizations
            //***********************************************************************
    
            public static int Jacobi(BigInteger a, BigInteger b)
            {
                // Jacobi defined only for odd integers
                if ((b.data[0] & 0x1) == 0)
                    throw (new ArgumentException("Jacobi defined only for odd integers."));
    
                if (a >= b) a %= b;
                if (a.dataLength == 1 && a.data[0] == 0) return 0;  // a == 0
                if (a.dataLength == 1 && a.data[0] == 1) return 1;  // a == 1
    
                if (a < 0)
                {
                    if ((((b - 1).data[0]) & 0x2) == 0)       //if( (((b-1) >> 1).data[0] & 0x1) == 0)
                        return Jacobi(-a, b);
                    else
                        return -Jacobi(-a, b);
                }
    
                int e = 0;
                for (int index = 0; index < a.dataLength; index++)
                {
                    uint mask = 0x01;
    
                    for (int i = 0; i < 32; i++)
                    {
                        if ((a.data[index] & mask) != 0)
                        {
                            index = a.dataLength;      // to break the outer loop
                            break;
                        }
                        mask <<= 1;
                        e++;
                    }
                }
    
                BigInteger a1 = a >> e;
    
                int s = 1;
                if ((e & 0x1) != 0 && ((b.data[0] & 0x7) == 3 || (b.data[0] & 0x7) == 5))
                    s = -1;
    
                if ((b.data[0] & 0x3) == 3 && (a1.data[0] & 0x3) == 3)
                    s = -s;
    
                if (a1.dataLength == 1 && a1.data[0] == 1)
                    return s;
                else
                    return (s * Jacobi(b % a1, a1));
            }
    
    
    
            //***********************************************************************
            // Generates a positive BigInteger that is probably prime.
            //***********************************************************************
    
            public static BigInteger genPseudoPrime(int bits, int confidence, Random rand)
            {
                BigInteger result = new BigInteger();
                bool done = false;
    
                while (!done)
                {
                    result.genRandomBits(bits, rand);
                    result.data[0] |= 0x01;        // make it odd
    
                    // prime test
                    done = result.isProbablePrime(confidence);
                }
                return result;
            }
    
    
            //***********************************************************************
            // Generates a random number with the specified number of bits such
            // that gcd(number, this) = 1
            //***********************************************************************
    
            public BigInteger genCoPrime(int bits, Random rand)
            {
                bool done = false;
                BigInteger result = new BigInteger();
    
                while (!done)
                {
                    result.genRandomBits(bits, rand);
                    //Console.WriteLine(result.ToString(16));
    
                    // gcd test
                    BigInteger g = result.gcd(this);
                    if (g.dataLength == 1 && g.data[0] == 1)
                        done = true;
                }
    
                return result;
            }
    
    
            //***********************************************************************
            // Returns the modulo inverse of this.  Throws ArithmeticException if
            // the inverse does not exist.  (i.e. gcd(this, modulus) != 1)
            //***********************************************************************
    
            public BigInteger modInverse(BigInteger modulus)
            {
                BigInteger[] p = { 0, 1 };
                BigInteger[] q = new BigInteger[2];    // quotients
                BigInteger[] r = { 0, 0 };             // remainders
    
                int step = 0;
    
                BigInteger a = modulus;
                BigInteger b = this;
    
                while (b.dataLength > 1 || (b.dataLength == 1 && b.data[0] != 0))
                {
                    BigInteger quotient = new BigInteger();
                    BigInteger remainder = new BigInteger();
    
                    if (step > 1)
                    {
                        BigInteger pval = (p[0] - (p[1] * q[0])) % modulus;
                        p[0] = p[1];
                        p[1] = pval;
                    }
    
                    if (b.dataLength == 1)
                        singleByteDivide(a, b, quotient, remainder);
                    else
                        multiByteDivide(a, b, quotient, remainder);
    
                    /*
                    Console.WriteLine(quotient.dataLength);
                    Console.WriteLine("{0} = {1}({2}) + {3}  p = {4}", a.ToString(10),
                                      b.ToString(10), quotient.ToString(10), remainder.ToString(10),
                                      p[1].ToString(10));
                    */
    
                    q[0] = q[1];
                    r[0] = r[1];
                    q[1] = quotient; r[1] = remainder;
    
                    a = b;
                    b = remainder;
    
                    step++;
                }
    
                if (r[0].dataLength > 1 || (r[0].dataLength == 1 && r[0].data[0] != 1))
                    throw (new ArithmeticException("No inverse!"));
    
                BigInteger result = ((p[0] - (p[1] * q[0])) % modulus);
    
                if ((result.data[maxLength - 1] & 0x80000000) != 0)
                    result += modulus;  // get the least positive modulus
    
                return result;
            }
    
    
            //***********************************************************************
            // Returns the value of the BigInteger as a byte array.  The lowest
            // index contains the MSB.
            //***********************************************************************
    
            public byte[] getBytes()
            {
                int numBits = bitCount();
    
                int numBytes = numBits >> 3;
                if ((numBits & 0x7) != 0)
                    numBytes++;
    
                byte[] result = new byte[numBytes];
    
                //Console.WriteLine(result.Length);
    
                int pos = 0;
                uint tempVal, val = data[dataLength - 1];
    
                if ((tempVal = (val >> 24 & 0xFF)) != 0)
                    result[pos++] = (byte)tempVal;
                if ((tempVal = (val >> 16 & 0xFF)) != 0)
                    result[pos++] = (byte)tempVal;
                if ((tempVal = (val >> 8 & 0xFF)) != 0)
                    result[pos++] = (byte)tempVal;
                if ((tempVal = (val & 0xFF)) != 0)
                    result[pos++] = (byte)tempVal;
    
                for (int i = dataLength - 2; i >= 0; i--, pos += 4)
                {
                    val = data[i];
                    result[pos + 3] = (byte)(val & 0xFF);
                    val >>= 8;
                    result[pos + 2] = (byte)(val & 0xFF);
                    val >>= 8;
                    result[pos + 1] = (byte)(val & 0xFF);
                    val >>= 8;
                    result[pos] = (byte)(val & 0xFF);
                }
    
                return result;
            }
    
    
            //***********************************************************************
            // Sets the value of the specified bit to 1
            // The Least Significant Bit position is 0.
            //***********************************************************************
    
            public void setBit(uint bitNum)
            {
                uint bytePos = bitNum >> 5;             // divide by 32
                byte bitPos = (byte)(bitNum & 0x1F);    // get the lowest 5 bits
    
                uint mask = (uint)1 << bitPos;
                this.data[bytePos] |= mask;
    
                if (bytePos >= this.dataLength)
                    this.dataLength = (int)bytePos + 1;
            }
    
    
            //***********************************************************************
            // Sets the value of the specified bit to 0
            // The Least Significant Bit position is 0.
            //***********************************************************************
    
            public void unsetBit(uint bitNum)
            {
                uint bytePos = bitNum >> 5;
    
                if (bytePos < this.dataLength)
                {
                    byte bitPos = (byte)(bitNum & 0x1F);
    
                    uint mask = (uint)1 << bitPos;
                    uint mask2 = 0xFFFFFFFF ^ mask;
    
                    this.data[bytePos] &= mask2;
    
                    if (this.dataLength > 1 && this.data[this.dataLength - 1] == 0)
                        this.dataLength--;
                }
            }
    
    
            //***********************************************************************
            // Returns a value that is equivalent to the integer square root
            // of the BigInteger.
            //
            // The integer square root of "this" is defined as the largest integer n
            // such that (n * n) <= this
            //
            //***********************************************************************
    
            public BigInteger sqrt()
            {
                uint numBits = (uint)this.bitCount();
    
                if ((numBits & 0x1) != 0)        // odd number of bits
                    numBits = (numBits >> 1) + 1;
                else
                    numBits = (numBits >> 1);
    
                uint bytePos = numBits >> 5;
                byte bitPos = (byte)(numBits & 0x1F);
    
                uint mask;
    
                BigInteger result = new BigInteger();
                if (bitPos == 0)
                    mask = 0x80000000;
                else
                {
                    mask = (uint)1 << bitPos;
                    bytePos++;
                }
                result.dataLength = (int)bytePos;
    
                for (int i = (int)bytePos - 1; i >= 0; i--)
                {
                    while (mask != 0)
                    {
                        // guess
                        result.data[i] ^= mask;
    
                        // undo the guess if its square is larger than this
                        if ((result * result) > this)
                            result.data[i] ^= mask;
    
                        mask >>= 1;
                    }
                    mask = 0x80000000;
                }
                return result;
            }
    
    
            //***********************************************************************
            // Returns the k_th number in the Lucas Sequence reduced modulo n.
            //
            // Uses index doubling to speed up the process.  For example, to calculate V(k),
            // we maintain two numbers in the sequence V(n) and V(n+1).
            //
            // To obtain V(2n), we use the identity
            //      V(2n) = (V(n) * V(n)) - (2 * Q^n)
            // To obtain V(2n+1), we first write it as
            //      V(2n+1) = V((n+1) + n)
            // and use the identity
            //      V(m+n) = V(m) * V(n) - Q * V(m-n)
            // Hence,
            //      V((n+1) + n) = V(n+1) * V(n) - Q^n * V((n+1) - n)
            //                   = V(n+1) * V(n) - Q^n * V(1)
            //                   = V(n+1) * V(n) - Q^n * P
            //
            // We use k in its binary expansion and perform index doubling for each
            // bit position.  For each bit position that is set, we perform an
            // index doubling followed by an index addition.  This means that for V(n),
            // we need to update it to V(2n+1).  For V(n+1), we need to update it to
            // V((2n+1)+1) = V(2*(n+1))
            //
            // This function returns
            // [0] = U(k)
            // [1] = V(k)
            // [2] = Q^n
            //
            // Where U(0) = 0 % n, U(1) = 1 % n
            //       V(0) = 2 % n, V(1) = P % n
            //***********************************************************************
    
            public static BigInteger[] LucasSequence(BigInteger P, BigInteger Q,
                                                     BigInteger k, BigInteger n)
            {
                if (k.dataLength == 1 && k.data[0] == 0)
                {
                    BigInteger[] result = new BigInteger[3];
    
                    result[0] = 0; result[1] = 2 % n; result[2] = 1 % n;
                    return result;
                }
    
                // calculate constant = b^(2k) / m
                // for Barrett Reduction
                BigInteger constant = new BigInteger();
    
                int nLen = n.dataLength << 1;
                constant.data[nLen] = 0x00000001;
                constant.dataLength = nLen + 1;
    
                constant = constant / n;
    
                // calculate values of s and t
                int s = 0;
    
                for (int index = 0; index < k.dataLength; index++)
                {
                    uint mask = 0x01;
    
                    for (int i = 0; i < 32; i++)
                    {
                        if ((k.data[index] & mask) != 0)
                        {
                            index = k.dataLength;      // to break the outer loop
                            break;
                        }
                        mask <<= 1;
                        s++;
                    }
                }
    
                BigInteger t = k >> s;
    
                //Console.WriteLine("s = " + s + " t = " + t);
                return LucasSequenceHelper(P, Q, t, n, constant, s);
            }
    
    
            //***********************************************************************
            // Performs the calculation of the kth term in the Lucas Sequence.
            // For details of the algorithm, see reference [9].
            //
            // k must be odd.  i.e LSB == 1
            //***********************************************************************
    
            private static BigInteger[] LucasSequenceHelper(BigInteger P, BigInteger Q,
                                                            BigInteger k, BigInteger n,
                                                            BigInteger constant, int s)
            {
                BigInteger[] result = new BigInteger[3];
    
                if ((k.data[0] & 0x00000001) == 0)
                    throw (new ArgumentException("Argument k must be odd."));
    
                int numbits = k.bitCount();
                uint mask = (uint)0x1 << ((numbits & 0x1F) - 1);
    
                // v = v0, v1 = v1, u1 = u1, Q_k = Q^0
    
                BigInteger v = 2 % n, Q_k = 1 % n,
                           v1 = P % n, u1 = Q_k;
                bool flag = true;
    
                for (int i = k.dataLength - 1; i >= 0; i--)     // iterate on the binary expansion of k
                {
                    //Console.WriteLine("round");
                    while (mask != 0)
                    {
                        if (i == 0 && mask == 0x00000001)        // last bit
                            break;
    
                        if ((k.data[i] & mask) != 0)             // bit is set
                        {
                            // index doubling with addition
    
                            u1 = (u1 * v1) % n;
    
                            v = ((v * v1) - (P * Q_k)) % n;
                            v1 = n.BarrettReduction(v1 * v1, n, constant);
                            v1 = (v1 - ((Q_k * Q) << 1)) % n;
    
                            if (flag)
                                flag = false;
                            else
                                Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
    
                            Q_k = (Q_k * Q) % n;
                        }
                        else
                        {
                            // index doubling
                            u1 = ((u1 * v) - Q_k) % n;
    
                            v1 = ((v * v1) - (P * Q_k)) % n;
                            v = n.BarrettReduction(v * v, n, constant);
                            v = (v - (Q_k << 1)) % n;
    
                            if (flag)
                            {
                                Q_k = Q % n;
                                flag = false;
                            }
                            else
                                Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
                        }
    
                        mask >>= 1;
                    }
                    mask = 0x80000000;
                }
    
                // at this point u1 = u(n+1) and v = v(n)
                // since the last bit always 1, we need to transform u1 to u(2n+1) and v to v(2n+1)
    
                u1 = ((u1 * v) - Q_k) % n;
                v = ((v * v1) - (P * Q_k)) % n;
                if (flag)
                    flag = false;
                else
                    Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
    
                Q_k = (Q_k * Q) % n;
    
    
                for (int i = 0; i < s; i++)
                {
                    // index doubling
                    u1 = (u1 * v) % n;
                    v = ((v * v) - (Q_k << 1)) % n;
    
                    if (flag)
                    {
                        Q_k = Q % n;
                        flag = false;
                    }
                    else
                        Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
                }
    
                result[0] = u1;
                result[1] = v;
                result[2] = Q_k;
    
                return result;
            }
    
    
            //***********************************************************************
            // Tests the correct implementation of the /, %, * and + operators
            //***********************************************************************
    
            public static void MulDivTest(int rounds)
            {
                Random rand = new Random();
                byte[] val = new byte[64];
                byte[] val2 = new byte[64];
    
                for (int count = 0; count < rounds; count++)
                {
                    // generate 2 numbers of random length
                    int t1 = 0;
                    while (t1 == 0)
                        t1 = (int)(rand.NextDouble() * 65);
    
                    int t2 = 0;
                    while (t2 == 0)
                        t2 = (int)(rand.NextDouble() * 65);
    
                    bool done = false;
                    while (!done)
                    {
                        for (int i = 0; i < 64; i++)
                        {
                            if (i < t1)
                                val[i] = (byte)(rand.NextDouble() * 256);
                            else
                                val[i] = 0;
    
                            if (val[i] != 0)
                                done = true;
                        }
                    }
    
                    done = false;
                    while (!done)
                    {
                        for (int i = 0; i < 64; i++)
                        {
                            if (i < t2)
                                val2[i] = (byte)(rand.NextDouble() * 256);
                            else
                                val2[i] = 0;
    
                            if (val2[i] != 0)
                                done = true;
                        }
                    }
    
                    while (val[0] == 0)
                        val[0] = (byte)(rand.NextDouble() * 256);
                    while (val2[0] == 0)
                        val2[0] = (byte)(rand.NextDouble() * 256);
    
                    Console.WriteLine(count);
                    BigInteger bn1 = new BigInteger(val, t1);
                    BigInteger bn2 = new BigInteger(val2, t2);
    
    
                    // Determine the quotient and remainder by dividing
                    // the first number by the second.
    
                    BigInteger bn3 = bn1 / bn2;
                    BigInteger bn4 = bn1 % bn2;
    
                    // Recalculate the number
                    BigInteger bn5 = (bn3 * bn2) + bn4;
    
                    // Make sure they're the same
                    if (bn5 != bn1)
                    {
                        Console.WriteLine("Error at " + count);
                        Console.WriteLine(bn1 + "
    ");
                        Console.WriteLine(bn2 + "
    ");
                        Console.WriteLine(bn3 + "
    ");
                        Console.WriteLine(bn4 + "
    ");
                        Console.WriteLine(bn5 + "
    ");
                        return;
                    }
                }
            }
    
    
            //***********************************************************************
            // Tests the correct implementation of the modulo exponential function
            // using RSA encryption and decryption (using pre-computed encryption and
            // decryption keys).
            //***********************************************************************
    
            public static void RSATest(int rounds)
            {
                Random rand = new Random(1);
                byte[] val = new byte[64];
    
                // private and public key
                BigInteger bi_e = new BigInteger("a932b948feed4fb2b692609bd22164fc9edb59fae7880cc1eaff7b3c9626b7e5b241c27a974833b2622ebe09beb451917663d47232488f23a117fc97720f1e7", 16);
                BigInteger bi_d = new BigInteger("4adf2f7a89da93248509347d2ae506d683dd3a16357e859a980c4f77a4e2f7a01fae289f13a851df6e9db5adaa60bfd2b162bbbe31f7c8f828261a6839311929d2cef4f864dde65e556ce43c89bbbf9f1ac5511315847ce9cc8dc92470a747b8792d6a83b0092d2e5ebaf852c85cacf34278efa99160f2f8aa7ee7214de07b7", 16);
                BigInteger bi_n = new BigInteger("e8e77781f36a7b3188d711c2190b560f205a52391b3479cdb99fa010745cbeba5f2adc08e1de6bf38398a0487c4a73610d94ec36f17f3f46ad75e17bc1adfec99839589f45f95ccc94cb2a5c500b477eb3323d8cfab0c8458c96f0147a45d27e45a4d11d54d77684f65d48f15fafcc1ba208e71e921b9bd9017c16a5231af7f", 16);
    
                Console.WriteLine("e =
    " + bi_e.ToString(10));
                Console.WriteLine("
    d =
    " + bi_d.ToString(10));
                Console.WriteLine("
    n =
    " + bi_n.ToString(10) + "
    ");
    
                for (int count = 0; count < rounds; count++)
                {
                    // generate data of random length
                    int t1 = 0;
                    while (t1 == 0)
                        t1 = (int)(rand.NextDouble() * 65);
    
                    bool done = false;
                    while (!done)
                    {
                        for (int i = 0; i < 64; i++)
                        {
                            if (i < t1)
                                val[i] = (byte)(rand.NextDouble() * 256);
                            else
                                val[i] = 0;
    
                            if (val[i] != 0)
                                done = true;
                        }
                    }
    
                    while (val[0] == 0)
                        val[0] = (byte)(rand.NextDouble() * 256);
    
                    Console.Write("Round = " + count);
    
                    // encrypt and decrypt data
                    BigInteger bi_data = new BigInteger(val, t1);
                    BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n);
                    BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n);
    
                    // compare
                    if (bi_decrypted != bi_data)
                    {
                        Console.WriteLine("
    Error at round " + count);
                        Console.WriteLine(bi_data + "
    ");
                        return;
                    }
                    Console.WriteLine(" <PASSED>.");
                }
    
            }
    
    
            //***********************************************************************
            // Tests the correct implementation of the modulo exponential and
            // inverse modulo functions using RSA encryption and decryption.  The two
            // pseudoprimes p and q are fixed, but the two RSA keys are generated
            // for each round of testing.
            //***********************************************************************
    
            public static void RSATest2(int rounds)
            {
                Random rand = new Random();
                byte[] val = new byte[64];
    
                byte[] pseudoPrime1 = {
                            (byte)0x85, (byte)0x84, (byte)0x64, (byte)0xFD, (byte)0x70, (byte)0x6A,
                            (byte)0x9F, (byte)0xF0, (byte)0x94, (byte)0x0C, (byte)0x3E, (byte)0x2C,
                            (byte)0x74, (byte)0x34, (byte)0x05, (byte)0xC9, (byte)0x55, (byte)0xB3,
                            (byte)0x85, (byte)0x32, (byte)0x98, (byte)0x71, (byte)0xF9, (byte)0x41,
                            (byte)0x21, (byte)0x5F, (byte)0x02, (byte)0x9E, (byte)0xEA, (byte)0x56,
                            (byte)0x8D, (byte)0x8C, (byte)0x44, (byte)0xCC, (byte)0xEE, (byte)0xEE,
                            (byte)0x3D, (byte)0x2C, (byte)0x9D, (byte)0x2C, (byte)0x12, (byte)0x41,
                            (byte)0x1E, (byte)0xF1, (byte)0xC5, (byte)0x32, (byte)0xC3, (byte)0xAA,
                            (byte)0x31, (byte)0x4A, (byte)0x52, (byte)0xD8, (byte)0xE8, (byte)0xAF,
                            (byte)0x42, (byte)0xF4, (byte)0x72, (byte)0xA1, (byte)0x2A, (byte)0x0D,
                            (byte)0x97, (byte)0xB1, (byte)0x31, (byte)0xB3,
                    };
    
                byte[] pseudoPrime2 = {
                            (byte)0x99, (byte)0x98, (byte)0xCA, (byte)0xB8, (byte)0x5E, (byte)0xD7,
                            (byte)0xE5, (byte)0xDC, (byte)0x28, (byte)0x5C, (byte)0x6F, (byte)0x0E,
                            (byte)0x15, (byte)0x09, (byte)0x59, (byte)0x6E, (byte)0x84, (byte)0xF3,
                            (byte)0x81, (byte)0xCD, (byte)0xDE, (byte)0x42, (byte)0xDC, (byte)0x93,
                            (byte)0xC2, (byte)0x7A, (byte)0x62, (byte)0xAC, (byte)0x6C, (byte)0xAF,
                            (byte)0xDE, (byte)0x74, (byte)0xE3, (byte)0xCB, (byte)0x60, (byte)0x20,
                            (byte)0x38, (byte)0x9C, (byte)0x21, (byte)0xC3, (byte)0xDC, (byte)0xC8,
                            (byte)0xA2, (byte)0x4D, (byte)0xC6, (byte)0x2A, (byte)0x35, (byte)0x7F,
                            (byte)0xF3, (byte)0xA9, (byte)0xE8, (byte)0x1D, (byte)0x7B, (byte)0x2C,
                            (byte)0x78, (byte)0xFA, (byte)0xB8, (byte)0x02, (byte)0x55, (byte)0x80,
                            (byte)0x9B, (byte)0xC2, (byte)0xA5, (byte)0xCB,
                    };
    
    
                BigInteger bi_p = new BigInteger(pseudoPrime1);
                BigInteger bi_q = new BigInteger(pseudoPrime2);
                BigInteger bi_pq = (bi_p - 1) * (bi_q - 1);
                BigInteger bi_n = bi_p * bi_q;
    
                for (int count = 0; count < rounds; count++)
                {
                    // generate private and public key
                    BigInteger bi_e = bi_pq.genCoPrime(512, rand);
                    BigInteger bi_d = bi_e.modInverse(bi_pq);
    
                    Console.WriteLine("
    e =
    " + bi_e.ToString(10));
                    Console.WriteLine("
    d =
    " + bi_d.ToString(10));
                    Console.WriteLine("
    n =
    " + bi_n.ToString(10) + "
    ");
    
                    // generate data of random length
                    int t1 = 0;
                    while (t1 == 0)
                        t1 = (int)(rand.NextDouble() * 65);
    
                    bool done = false;
                    while (!done)
                    {
                        for (int i = 0; i < 64; i++)
                        {
                            if (i < t1)
                                val[i] = (byte)(rand.NextDouble() * 256);
                            else
                                val[i] = 0;
    
                            if (val[i] != 0)
                                done = true;
                        }
                    }
    
                    while (val[0] == 0)
                        val[0] = (byte)(rand.NextDouble() * 256);
    
                    Console.Write("Round = " + count);
    
                    // encrypt and decrypt data
                    BigInteger bi_data = new BigInteger(val, t1);
                    BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n);
                    BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n);
    
                    // compare
                    if (bi_decrypted != bi_data)
                    {
                        Console.WriteLine("
    Error at round " + count);
                        Console.WriteLine(bi_data + "
    ");
                        return;
                    }
                    Console.WriteLine(" <PASSED>.");
                }
    
            }
    
    
            //***********************************************************************
            // Tests the correct implementation of sqrt() method.
            //***********************************************************************
    
            public static void SqrtTest(int rounds)
            {
                Random rand = new Random();
                for (int count = 0; count < rounds; count++)
                {
                    // generate data of random length
                    int t1 = 0;
                    while (t1 == 0)
                        t1 = (int)(rand.NextDouble() * 1024);
    
                    Console.Write("Round = " + count);
    
                    BigInteger a = new BigInteger();
                    a.genRandomBits(t1, rand);
    
                    BigInteger b = a.sqrt();
                    BigInteger c = (b + 1) * (b + 1);
    
                    // check that b is the largest integer such that b*b <= a
                    if (c <= a)
                    {
                        Console.WriteLine("
    Error at round " + count);
                        Console.WriteLine(a + "
    ");
                        return;
                    }
                    Console.WriteLine(" <PASSED>.");
                }
            }
    
            #endregion
        }
    }
    View Code

    调用方法

            static void test()
            {
                string str = "{"sc":"his51","no":"1","na":"管理员"}";
                System.Diagnostics.Debug.Print("明文:
    " + str + "
    ");
                RSAHelper.RSAKey keyPair = RSAHelper.GetRASKey();
                System.Diagnostics.Debug.Print("公钥:
    " + keyPair.PublicKey + "
    ");
                System.Diagnostics.Debug.Print("私钥:
    " + keyPair.PrivateKey + "
    ");
    
                string en = RSAHelper.EncryptString(str, keyPair.PrivateKey);
                System.Diagnostics.Debug.Print("公钥加密后:
    " + en + "
    ");
    
                var de = RSAHelper.DecryptString(en, keyPair.PublicKey);
                System.Diagnostics.Debug.Print("解密:
    " + de + "
    ");
                Console.ReadKey();
            }

    输出demo

    明文:
    {"sc":"his51","no":"1","na":"管理员"}
    
    公钥:
    AwEAAcVDSgexdQkY2OOZ2cs8Q2O9oFg0Gw1DkUofZ8w3keihXanlmluLAvIUTfUpSq1bmDvlM3jnxbc9uHpCMpVk4hPnnLcZvIy8JcSg1B1jHHSeLIW1MBh5VuHIYvSkBm3+S26sU5MMqLUq46YW74jKWbLy4kXSBEmiE0zJLlE7g9ap
    
    私钥:
    gJCIFuvAF/JMZE2O4kbIps+jlqJJuzBiu0dF73VvmdaKtOfQtOIx3jykp+HjGTYfkFECRE5n8zOpY0sgyZMwUXveki9tcglOQiF6bPCkhBaK1S4j/UYTAxxMfgQzsMN32C6RP2RUwSMb3u4hAGPfMMwj5ySmijx8REyNa42t5wgBxUNKB7F1CRjY45nZyzxDY72gWDQbDUORSh9nzDeR6KFdqeWaW4sC8hRN9SlKrVuYO+UzeOfFtz24ekIylWTiE+ectxm8jLwlxKDUHWMcdJ4shbUwGHlW4chi9KQGbf5LbqxTkwyotSrjphbviMpZsvLiRdIESaITTMkuUTuD1qk=
    
    公钥加密后:
    61631DE036DE7F4E4083375FC708B7DB57DBE73B4BFED4F4C902EFF1A3F0D57C307937163D84EA2792EDE5D52280092A1555C33C314A6A862000C7448CBCFD6E8E8E1A6E0505A4020AD8AFF8434D68B97BD80558DD118D6C5AF674D1246BB3A6567FF8A1C678DCFBF6411D7869508758C3EF11FC1A09A14A750EB748CB056EA3
    
    解密:
    {"sc":"his51","no":"1","na":"管理员"}

    公钥加密,私钥解密。

  • 相关阅读:
    关于Netty4.x中文教程系列更新进度的说明和道歉
    Netty4.x中文教程系列(四) ChannelHandler
    Netty4.x中文教程系列(三) Hello World !详解
    Netty4.x中文教程系列(二) Hello World !
    Netty4.x中文教程系列(一) 目录及概述
    【推荐】HTML5 UI框架 推荐
    【转载】【JQuery学习】jQuery插件开发
    前端与后端的数据交互(jquery ajax+python flask)
    【JS教程32】ajax
    【JS教程31】json
  • 原文地址:https://www.cnblogs.com/jhli/p/7128583.html
Copyright © 2011-2022 走看看