zoukankan      html  css  js  c++  java
  • MapReduce-序列化(Writable)

    Hadoop 序列化特点

    Java 的序列化是一个重量级序列化框架(Serializable),一个对象被序列化后,会附带很多额外的信息(各种校验信息,Header,继承体系等),不便于在网络中高效传输。所以,Hadoop 自己开发了一套序列化机制(Writable)
    
    Hadoop 序列化特点:
    紧凑:高效使用存储空间
    快速:读写数据的额外开销小
    可扩展:随着通信协议的升级而可升级
    互操作:支持多语言的交互

    常用数据类型对应的 Hadoop 数据序列化类型

    Java类型

    Hadoop Writable类型

    boolean

    BooleanWritable

    byte

    ByteWritable

    int

    IntWritable

    float

    FloatWritable

    long

    LongWritable

    double

    DoubleWritable

    String

    Text

    map

    MapWritable

    array

    ArrayWritable

    自定义序列化数据类型

    (1)必须实现Writable接口
    (2)反序列化时,需要反射调用空参构造函数,所以必须有空参构造
    (3)重写序列化方法
    (4)重写反序列化方法
    (5)注意反序列化的顺序和序列化的顺序完全一致
    (6)要想把结果显示在文件中,需要重写 toString(),可用 	 分开,方便后续用
    (7)如果需要将自定义的 bean 放在 key 中传输,则还需要实现Comparable 接口,因为 MapReduce 框中的 Shuffle 过程要求对 key 必须能排序

    测试:完成手机号的总上行流量,总下行流量,总流量的统计

    测试数据 phone.txt

    1	13736230513	192.196.100.1	www.atguigu.com	2481	24681	200
    2	13846544121	192.196.100.2			264	0	200
    3 	13956435636	192.196.100.3			132	1512	200
    4 	13966251146	192.168.100.1			240	0	404
    5 	18271575951	192.168.100.2	www.atguigu.com	1527	2106	200
    6 	13470253144	192.168.100.3	www.atguigu.com	4116	1432	200
    7 	13590439668	192.168.100.4			1116	954	200
    8 	15910133277	192.168.100.5	www.hao123.com	3156	2936	200
    9 	13729199489	192.168.100.6			240	0	200
    10 	13630577991	192.168.100.7	www.shouhu.com	6960	690	200
    11 	15043685818	192.168.100.8	www.baidu.com	3659	3538	200
    12 	15959002129	192.168.100.9	www.atguigu.com	1938	180	500
    13 	13560439638	192.168.100.10			918	4938	200
    14 	13470253144	192.168.100.11			180	180	200
    15 	13682846555	192.168.100.12	www.qq.com	1938	2910	200
    16 	13992314666	192.168.100.13	www.gaga.com	3008	3720	200
    17 	13509468723	192.168.100.14	www.qinghua.com	7335	110349	404
    18 	18390173782	192.168.100.15	www.sogou.com	9531	2412	200
    19 	13975057813	192.168.100.16	www.baidu.com	11058	48243	200
    20 	13768778790	192.168.100.17			120	120	200
    21 	13568436656	192.168.100.18	www.alibaba.com	2481	24681	200
    22 	13568436656	192.168.100.19			1116	954	200
    View Code

    定义序列化对象

    import java.io.DataInput;
    import java.io.DataOutput;
    import java.io.IOException;
    
    import org.apache.hadoop.io.Writable;
    
    public class FlowBean implements Writable {
    
        // 上行流量
        private long upFlow;
        // 下行流量
        private long downFlow;
        // 总流量
        private long sumFlow;
    
        public FlowBean() {
            // 空参构造, 后续反射用
            super();
        }
        
        public FlowBean(long upFlow, long downFlow) {
            super();
            this.upFlow = upFlow;
            this.downFlow = downFlow;
            this.sumFlow = upFlow + downFlow;
        }
    
        @Override
        public void write(DataOutput out) throws IOException {
            // 序列化方法
            out.writeLong(upFlow);
            out.writeLong(downFlow);
            out.writeLong(sumFlow);
        }
    
        @Override
        public void readFields(DataInput in) throws IOException {
            // 反序列化方法
            // 必须要求和序列化方法顺序一致
            upFlow = in.readLong();
            downFlow = in.readLong();
            sumFlow = in.readLong();
        }
    
        @Override
        public String toString() {
            return upFlow + "	" + downFlow + "	" + sumFlow;
        }
    
        public long getSumFlow() {
            return sumFlow;
        }
    
        public void setSumFlow(long sumFlow) {
            this.sumFlow = sumFlow;
        }
    }

    MapReduce程序

    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.log4j.BasicConfigurator;
    
    import java.io.IOException;
    
    public class FlowsumDriver {
    
        static {
            try {
                // 设置 HADOOP_HOME 环境变量
                System.setProperty("hadoop.home.dir", "D://DevelopTools/hadoop-2.9.2/");
                // 日志初始化
                BasicConfigurator.configure();
                // 加载库文件
                System.load("D://DevelopTools/hadoop-2.9.2/bin/hadoop.dll");
            } catch (UnsatisfiedLinkError e) {
                System.err.println("Native code library failed to load.
    " + e);
                System.exit(1);
            }
        }
    
        public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
            Configuration conf = new Configuration();
            // 获取job对象
            Job job = Job.getInstance(conf);
    
            // 设置jar的路径
            job.setJarByClass(FlowsumDriver.class);
    
            // 关联mapper和reducer
            job.setMapperClass(FlowCountMapper.class);
            job.setReducerClass(FlowCountReducer.class);
    
            // 设置mapper输出的key和value类型
            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(FlowBean.class);
    
            // 设置最终输出的key和value类型
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(FlowBean.class);
    
            // 设置输入输出路径
            args = new String[]{"D://tmp/phone.txt", "D://tmp/456"};
            FileInputFormat.setInputPaths(job, new Path(args[0]));
            FileOutputFormat.setOutputPath(job, new Path(args[1]));
            // 提交job
            boolean result = job.waitForCompletion(true);
            System.exit(result ? 0 : 1);
        }
    }
    
    class FlowCountMapper extends Mapper<LongWritable, Text, Text, FlowBean> {
    
        private Text k = new Text();
        private FlowBean v;
    
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            // 获取一行
            String line = value.toString();
            // 切割 	
            String[] fields = line.split("	");
            // 手机号
            k.set(fields[1]);
            long upFlow = Long.parseLong(fields[fields.length - 3]);
            long downFlow = Long.parseLong(fields[fields.length - 2]);
            v = new FlowBean(upFlow, downFlow);
            // 写出
            context.write(k, v);
        }
    }
    
    class FlowCountReducer extends Reducer<Text, FlowBean, Text, FlowBean> {
    
        private FlowBean v;
    
        @Override
        protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {
            long sumUpFlow = 0L;
            long sumDownFlow = 0L;
            // 累加求和
            for (FlowBean flowBean : values) {
                sumUpFlow += flowBean.getUpFlow();
                sumDownFlow += flowBean.getDownFlow();
            }
            v = new FlowBean(sumUpFlow, sumDownFlow);
            // 写出
            context.write(key, v);
        }
    }

    结果 part-r-00000

    13470253144	4296	1612	5908
    13509468723	7335	110349	117684
    13560439638	918	4938	5856
    13568436656	3597	25635	29232
    13590439668	1116	954	2070
    13630577991	6960	690	7650
    13682846555	1938	2910	4848
    13729199489	240	0	240
    13736230513	2481	24681	27162
    13768778790	120	120	240
    13846544121	264	0	264
    13956435636	132	1512	1644
    13966251146	240	0	240
    13975057813	11058	48243	59301
    13992314666	3008	3720	6728
    15043685818	3659	3538	7197
    15910133277	3156	2936	6092
    15959002129	1938	180	2118
    18271575951	1527	2106	3633
    18390173782	9531	2412	11943
    View Code

    http://hadoop.apache.org/docs/current/api/org/apache/hadoop/io/Writable.html

  • 相关阅读:
    QML类型说明-ParallelAnimation
    QML基本可视化元素--Text
    qml学习笔记(二):可视化元素基类Item详解(上半场anchors等等)
    JavaScript toFixed() 方法
    FM/AM收音机原理
    Q_INVOKABLE与invokeMethod用法全解
    SQL问题(面试题)
    数组、List和ArrayList的区别
    catch/finally中不应使用 writer.flush()
    Spring AOP整理
  • 原文地址:https://www.cnblogs.com/jhxxb/p/10729144.html
Copyright © 2011-2022 走看看