The Euler function
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Problem Description
The Euler function phi is an important kind of function in number theory, (n) represents the amount of the numbers which are smaller than n and coprime to n, and this function has a lot of beautiful characteristics. Here comes a very easy question: suppose you are given a, b, try to calculate (a)+ (a+1)+....+ (b)
Input
There are several test cases. Each line has two integers a, b (2<a<b<3000000).
Output
Output the result of (a)+ (a+1)+....+ (b)
Sample Input
3 100
Sample Output
3042
Source
思路:欧拉函数打表;
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
#include<iostream> #include<cstdio> #include<cmath> #include<string> #include<queue> #include<algorithm> #include<stack> #include<cstring> #include<vector> #include<list> #include<set> #include<map> using namespace std; #define ll __int64 #define mod 1000000007 #define inf 999999999 //#pragma comment(linker, "/STACK:102400000,102400000") int scan() { int res = 0 , ch ; while( !( ( ch = getchar() ) >= '0' && ch <= '9' ) ) { if( ch == EOF ) return 1 << 30 ; } res = ch - '0' ; while( ( ch = getchar() ) >= '0' && ch <= '9' ) res = res * 10 + ( ch - '0' ) ; return res ; } int p[3000010],N=3000010; void phi() { for(int i=1; i<N; i++) p[i] = i; for(int i=2; i<N; i+=2) p[i] >>= 1; for(int i=3; i<N; i+=2) { if(p[i] == i) { for(int j=i; j<N; j+=i) p[j] = p[j] - p[j] / i; } } } int main() { int x,y,z,i,t; phi(); while(~scanf("%d%d",&x,&y)) { ll ans=0; for(i=x;i<=y;i++) ans+=p[i]; printf("%I64d ",ans); } return 0; }