zoukankan      html  css  js  c++  java
  • codeforces 251 div2 C. Devu and Partitioning of the Array 模拟

    C. Devu and Partitioning of the Array
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Devu being a small kid, likes to play a lot, but he only likes to play with arrays. While playing he came up with an interesting question which he could not solve, can you please solve it for him?

    Given an array consisting of distinct integers. Is it possible to partition the whole array into k disjoint non-empty parts such that p of the parts have even sum (each of them must have even sum) and remaining k - p have odd sum? (note that parts need not to be continuous).

    If it is possible to partition the array, also give any possible way of valid partitioning.

    Input

    The first line will contain three space separated integers nkp (1 ≤ k ≤ n ≤ 105; 0 ≤ p ≤ k). The next line will contain n space-separated distinct integers representing the content of array aa1, a2, ..., an (1 ≤ ai ≤ 109).

    Output

    In the first line print "YES" (without the quotes) if it is possible to partition the array in the required way. Otherwise print "NO" (without the quotes).

    If the required partition exists, print k lines after the first line. The ith of them should contain the content of the ith part. Print the content of the part in the line in the following way: firstly print the number of elements of the part, then print all the elements of the part in arbitrary order. There must be exactly p parts with even sum, each of the remaining k - p parts must have odd sum.

    As there can be multiple partitions, you are allowed to print any valid partition.

    Examples
    input
    5 5 3
    2 6 10 5 9
    output
    YES
    1 9
    1 5
    1 10
    1 6
    1 2
    input
    5 5 3
    7 14 2 9 5
    output
    NO
    input
    5 3 1
    1 2 3 7 5
    output
    YES
    3 5 1 3
    1 7
    1 2

     题意:给你n个数,分成m堆,这些堆的和为偶数的堆为p堆;

    思路:分析清楚情况就是,偶数永远是偶数,但是两个奇数可以组成一个偶数;

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<string>
    #include<queue>
    #include<algorithm>
    #include<stack>
    #include<cstring>
    #include<vector>
    #include<list>
    #include<set>
    #include<map>
    using namespace std;
    #define ll __int64
    #define mod 1000000007
    #define inf 999999999
    //#pragma comment(linker, "/STACK:102400000,102400000")
    int scan()
    {
        int res = 0 , ch ;
        while( !( ( ch = getchar() ) >= '0' && ch <= '9' ) )
        {
            if( ch == EOF ) return 1 << 30 ;
        }
        res = ch - '0' ;
        while( ( ch = getchar() ) >= '0' && ch <= '9' )
            res = res * 10 + ( ch - '0' ) ;
        return res ;
    }
    int even[100010],ji;
    int odd[100010],ou;
    int main()
    {
        int x,y,z,i,t;
        int n,k,p;
        scanf("%d%d%d",&n,&k,&p);
        for(i=0;i<n;i++)
        {
            scanf("%d",&z);
            if(z&1)
            even[ji++]=z;
            else
            odd[ou++]=z;
        }
        if(ji<k-p||(ji-k+p)&1)
        {
            printf("NO
    ");
            return 0;
        }
        else
        {
            if(ou+(ji-k+p)/2<p)
            {
                printf("NO
    ");
                return 0;
            }
            else
            {
                printf("YES
    ");
                if(p==0)
                {
                    for(i=0;i<k-p-1;i++)
                    printf("1 %d
    ",even[i]);
                    printf("%d",ji-k+1+ou);
                    for(i=k-p-1;i<ji;i++)
                    printf(" %d",even[i]);
                    for(i=0;i<ou;i++)
                    printf(" %d",odd[i]);
                    printf("
    ");
                }
                else if(ou<p)
                {
                    int fuck=k-p;
                    for(i=0;i<k-p;i++)
                    printf("1 %d
    ",even[i]);
                    for(i=0;i<ou;i++)
                    printf("1 %d
    ",odd[i]);
                    for(i=0;i<p-ou-1;i++)
                    printf("2 %d %d
    ",even[fuck++],even[fuck++]);
                    printf("%d",ji-fuck);
                    for(i=fuck;i<ji;i++)
                    printf(" %d",even[i]);
                    printf("
    ");
                }
                else
                {
                    for(i=0;i<k-p;i++)
                    printf("1 %d
    ",even[i]);
                    for(i=0;i<p-1;i++)
                    printf("1 %d
    ",odd[i]);
                    printf("%d",n-k+1);
                    for(i=k-p;i<ji;i++)
                    printf(" %d",even[i]);
                    for(i=p-1;i<ou;i++)
                    printf(" %d",odd[i]);
                    printf("
    ");
                }
            }
        }
        return 0;
    }
  • 相关阅读:
    【Python】多态、协议和鸭子类型
    【Python】魔法方法之__call__,将对象当方法使用
    【Python】策略模式
    【Python】if 后怎么就可以跟对象?变量交换写法是语法糖吗?
    【Python 库】NumPy 超详细教程(3):ndarray 的内部机理及高级迭代
    【Python 库】NumPy 超详细教程(2):数据类型
    【Python 库】NumPy 超详细教程(1):NumPy 数组
    【杂谈】10 年三线小城 IT 开发的感悟
    【PostgreSQL】安装及中文显示
    【Python 库】轻量级 ORM 框架 peewee 用法详解之——增删改查
  • 原文地址:https://www.cnblogs.com/jhz033/p/5475078.html
Copyright © 2011-2022 走看看