zoukankan      html  css  js  c++  java
  • bzoj 2226 LCMSum 欧拉函数

    2226: [Spoj 5971] LCMSum

    Time Limit: 20 Sec  Memory Limit: 259 MB
    Submit: 1123  Solved: 492
    [Submit][Status][Discuss]

    Description

    Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n,n), where LCM(i,n) denotes the Least Common Multiple of the integers i and n.

    Input

    The first line contains T the number of test cases. Each of the next T lines contain an integer n.

    Output

    Output T lines, one for each test case, containing the required sum.

    Sample Input

    3
    1
    2
    5

    Sample Output

    1
    4
    55

    HINT

    Constraints

    1 <= T <= 300000
    1 <= n <= 1000000

    思路:时间复杂度T*sqrt(n);

       小于n并且与n互质的数为phi(k)*k/2;

       1的情况是特例;全部long long会超时。。。卡死我了

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    #define mod 1000000007
    #define inf 999999999
    #define esp 0.00000000001
    const int MAXN=1000010;
    int prime[MAXN],cnt;
    bool vis[MAXN];
    int phi[MAXN];
    void Prime(int n)
    {
        phi[1]=1;
        for(int i=2;i<n;i++)
        {
            if(!vis[i])
            {
                prime[cnt++]=i;
                phi[i]=i-1;
            }
            for(int j=0;j<cnt&&i*prime[j]<n;j++)
            {
                int k=i*prime[j];
                vis[k]=1;
                if(i%prime[j]==0)
                {
                    phi[k]=phi[i]*prime[j];
                    break;
                }
                else
                phi[k]=phi[i]*(prime[j]-1);
            }
        }
    }
    ll phii(ll n)
    {
        return (ll)phi[n]*n/2;
    }
    int main()
    {
        int x,y,z,i,t;
        Prime(1000001);
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d",&x);
            ll ans=0;
            ll gg=sqrt(x);
            for(i=1;i<=gg;i++)
            {
                if(x%i==0)
                ans+=phii(x/i),ans+=phii(i);
            }
            if(gg*gg==x)
            ans-=phii(gg);
            printf("%lld
    ",(ans+1)*x);
        }
        return 0;
    }
  • 相关阅读:
    MyBatis缓存
    MyBatis动态SQL
    MyBatis中#{}和${}的区别
    MyBatis映射配置文件详解
    MyBatis核心配置文件详解
    MyBatis动态代理
    KO ------- 表中字段名和实体类属性名不一致
    对实体类的CRUD操作
    MyBatis配置数据源的两种方式
    MyBatis入门
  • 原文地址:https://www.cnblogs.com/jhz033/p/5506605.html
Copyright © 2011-2022 走看看