zoukankan      html  css  js  c++  java
  • hdu 2841 Visible Trees 容斥原理

    Visible Trees

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)


    Problem Description
    There are many trees forming a m * n grid, the grid starts from (1,1). Farmer Sherlock is standing at (0,0) point. He wonders how many trees he can see.

    If two trees and Sherlock are in one line, Farmer Sherlock can only see the tree nearest to him.
     
    Input
    The first line contains one integer t, represents the number of test cases. Then there are multiple test cases. For each test case there is one line containing two integers m and n(1 ≤ m, n ≤ 100000)
     
    Output
    For each test case output one line represents the number of trees Farmer Sherlock can see.
     
    Sample Input
    2 1 1 2 3
     
    Sample Output
    1 5
     
    Source
    题意:一个人站在(0,0)的位置,如果到两个点那个人的位置的斜率相等则无法看到远处的那个点;
    思路:找出(1-m)与i互质的个数 1<=i<=n;复杂度o(nsqrt(n));
    #include<bits/stdc++.h>
    using namespace std;
    #define ll __int64
    #define inf 1e18
    ll p[100],flag,x,ans;
    ll getp(ll x)
    {
        flag=0;
        for(ll i=2;i*i<=x;i++)
        {
            if(x%i==0)
            {
                p[flag++]=i;
                while(x%i==0)
                x/=i;
            }
        }
        if(x!=1)
        p[flag++]=x;
    }
    ll gcd(ll x,ll y)
    {
        return y==0?x:gcd(y,x%y);
    }
    void dfs(ll lcm,ll step,ll pos)
    {
        if(lcm>x)return;
        if(pos==flag)
        {
            if(step&1)
            ans+=x/lcm;
            else
            ans-=x/lcm;
            return;
        }
        dfs(lcm,step,pos+1);
        dfs(lcm/gcd(lcm,p[pos])*p[pos],step+1,pos+1);
    }
    int main()
    {
        ll y,z,i,t;
        int T;
        scanf("%d",&T);
        while(T--)
        {
            scanf("%I64d%I64d",&x,&y);
            ans=0;
            for(i=1;i<=y;i++)
            {
                getp(i);
                dfs(1,1,0);
            }
            printf("%I64d
    ",ans);
        }
        return 0;
    }
     
     
  • 相关阅读:
    线性代数学习笔记(代数版)
    洛谷P2765 魔术球问题(贪心 最大流)
    洛谷P2770 航空路线问题(费用流)
    洛谷P4013 数字梯形问题(费用流)
    洛谷P2774 方格取数问题(最小割)
    洛谷P2761 软件补丁问题(状压DP,SPFA)
    项目mysql数据导入数据的Java程序
    axd与ashx区别
    LD1-K(求差值最小的生成树)
    rabbitMQ入门
  • 原文地址:https://www.cnblogs.com/jhz033/p/5515482.html
Copyright © 2011-2022 走看看