zoukankan      html  css  js  c++  java
  • hdu 4602 Partition 矩阵快速幂

    Partition

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)


    Problem Description
    Define f(n) as the number of ways to perform n in format of the sum of some positive integers. For instance, when n=4, we have
      4=1+1+1+1
      4=1+1+2
      4=1+2+1
      4=2+1+1
      4=1+3
      4=2+2
      4=3+1
      4=4
    totally 8 ways. Actually, we will have f(n)=2(n-1) after observations.
    Given a pair of integers n and k, your task is to figure out how many times that the integer k occurs in such 2(n-1) ways. In the example above, number 1 occurs for 12 times, while number 4 only occurs once.
     
    Input
    The first line contains a single integer T(1≤T≤10000), indicating the number of test cases.
    Each test case contains two integers n and k(1≤n,k≤109).
     
    Output
    Output the required answer modulo 109+7 for each test case, one per line.
     
    Sample Input
    2 4 2 5 5
     
    Sample Output
    5 1
     
    Source
    思路:递推式a[n]=2*a[n-1]+2^(n-2);
    #include<bits/stdc++.h>
    using namespace std;
    #define ll __int64
    #define esp 0.00000000001
    const int N=3e5+10,M=1e6+10,inf=1e9,mod=1e9+7;
    struct is
    {
        ll a[10][10];
    };
    is juzhenmul(is a,is b,ll hang ,ll lie)
    {
        int i,t,j;
        is ans;
        memset(ans.a,0,sizeof(ans.a));
        for(i=1;i<=hang;i++)
        for(t=1;t<=lie;t++)
        for(j=1;j<=lie;j++)
        {
            ans.a[i][t]+=(a.a[i][j]*b.a[j][t]);
            ans.a[i][t]%=mod;
        }
        return ans;
    }
    is quickpow(is ans,is a,ll x)
    {
        while(x)
        {
            if(x&1)  ans=juzhenmul(ans,a,2,2);
            a=juzhenmul(a,a,2,2);
            x>>=1;
        }
        return ans;
    }
    ll getans(ll x)
    {
        if(x==1)
        return 1;
        if(x==2)
        return 2;
        is ans,base;
        memset(ans.a,0,sizeof(ans.a));
        ans.a[1][1]=1;
        ans.a[2][2]=1;
        base.a[1][1]=2;
        base.a[1][2]=0;
        base.a[2][1]=1;
        base.a[2][2]=2;
        ans=quickpow(ans,base,x-2);
        return (ans.a[1][1]*2+ans.a[2][1])%mod;
    }
    int main()
    {
        ll x,y,z,i,t;
        int T;
        scanf("%d",&T);
        while(T--)
        {
            scanf("%I64d%I64d",&x,&y);
            if(x>=y)
            printf("%I64d
    ",getans(x-y+1));
            else
            printf("0
    ");
        }
        return 0;
    }
  • 相关阅读:
    Two sum 两个数相加
    [ACM] hdu 1286 找新朋友(欧拉函数)
    环形队中实现队列的基本运算
    队列的顺序存储结构及其基本运算的实现
    栈的链式存储结构及其基本运算实现
    栈的顺序存储结构及其基本运算实现
    [ACM] hdu 1205 吃糖果(鸽巢原理)
    [ACM] poj 3128 Leonardo's Notebook (置换群,循环节)
    hdu acm 1051 Zipper
    [ACM] poj 2369 Permutations (置换群循环节长度)
  • 原文地址:https://www.cnblogs.com/jhz033/p/5655877.html
Copyright © 2011-2022 走看看