zoukankan      html  css  js  c++  java
  • hdu 4611 Balls Rearrangement 数学

    Balls Rearrangement

    Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)


    Problem Description
      Bob has N balls and A boxes. He numbers the balls from 0 to N-1, and numbers the boxes from 0 to A-1. To find the balls easily, he puts the ball numbered x into the box numbered a if x = a mod A.   Some day Bob buys B new boxes, and he wants to rearrange the balls from the old boxes to the new boxes. The new boxes are numbered from 0 to B-1. After the rearrangement, the ball numbered x should be in the box number b if x = b mod B.
      This work may be very boring, so he wants to know the cost before the rearrangement. If he moves a ball from the old box numbered a to the new box numbered b, the cost he considered would be |a-b|. The total cost is the sum of the cost to move every ball, and it is what Bob is interested in now.
     
    Input
      The first line of the input is an integer T, the number of test cases.(0<T<=50) 
      Then T test case followed. The only line of each test case are three integers N, A and B.(1<=N<=1000000000, 1<=A,B<=100000).
     
    Output
      For each test case, output the total cost.
     
    Sample Input
    3 1000000000 1 1 8 2 4 11 5 3
     
    Sample Output
    0 8 16
     
    Author
    SYSU
     
    Source
    题意:求sigma(i%a-i%b);   
    思路:显然lcm为循环节;
         当同时模加1 的时候差值相等所以只有在对A或B取模为0的时候会改变;
       即A、B的倍数为断点;
    #include<bits/stdc++.h>
    using namespace std;
    #define ll __int64
    #define esp 0.00000000001
    const int N=3e5+10,M=1e6+10,inf=1e9,mod=1e9+7;
    ll a[N],b[N],c[N];
    ll gcd(ll x,ll y)
    {
        return y==0?x:gcd(y,x%y);
    }
    int main()
    {
        ll x,y,z,i,t;
        int T;
        scanf("%d",&T);
        while(T--)
        {
            scanf("%I64d%I64d%I64d",&x,&y,&z);
            ll gc=gcd(y,z);
            ll lcm=y*z/gc;
            int ji=1;
            for(i=1;i<=lcm/y;i++)
            a[ji++]=i*y;
            for(i=1;i<lcm/z;i++)
            a[ji++]=i*z;
            sort(a,a+ji);
            for(i=0;i<ji-1;i++)
            {
                b[i]=a[i+1]-a[i];
                c[i]=abs(a[i]%y-a[i]%z);
            }
            ll sum=0;
            for(i=0;i<ji-1;i++)
            sum+=b[i]*c[i];
            ll ans=0;
            ans+=x/lcm*sum;
            x%=lcm;
            for(i=0;i<ji-1;i++)
            {
                if(x<=0)
                break;
                if(x<b[i])
                ans+=x*c[i];
                else
                ans+=b[i]*c[i];
                x-=b[i];
            }
            printf("%I64d
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    为html瘦身的pythonl函数
    python字符编码演示三则
    爬虫任务队列方案以及性能测试
    从一道动态规划到卡特兰数
    LeetCode 24 JAVA
    链表笔记
    KMP 算法
    LeetCode 有效数独 JAVA
    Leetcode 139 单词拆分 JAVA
    Leetcode 845 数组的山脉 JAVA
  • 原文地址:https://www.cnblogs.com/jhz033/p/5658093.html
Copyright © 2011-2022 走看看