zoukankan      html  css  js  c++  java
  • Codeforces Round #304 (Div. 2) D. Soldier and Number Game 素数打表+质因数分解

    D. Soldier and Number Game
    time limit per test
    3 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Two soldiers are playing a game. At the beginning first of them chooses a positive integer n and gives it to the second soldier. Then the second one tries to make maximum possible number of rounds. Each round consists of choosing a positive integer x > 1, such that n is divisible by x and replacing n with n / x. When n becomes equal to 1 and there is no more possible valid moves the game is over and the score of the second soldier is equal to the number of rounds he performed.

    To make the game more interesting, first soldier chooses n of form a! / b! for some positive integer a and b (a ≥ b). Here by k! we denote the factorial of k that is defined as a product of all positive integers not large than k.

    What is the maximum possible score of the second soldier?

    Input

    First line of input consists of single integer t (1 ≤ t ≤ 1 000 000) denoting number of games soldiers play.

    Then follow t lines, each contains pair of integers a and b (1 ≤ b ≤ a ≤ 5 000 000) defining the value of n for a game.

    Output

    For each game output a maximum score that the second soldier can get.

    Examples
    Input
    2
    3 1
    6 3
    Output
    2
    5
    题意:求[b+1,a]区间内的所有数质因数分解的得到的的质数个数;
    思路:素数打表+质因数分解求前缀和,这题nsqrt(n)不知道能不能过;
    #include<bits/stdc++.h>
    using namespace std;
    #define ll __int64
    #define esp 1e-10
    const int N=1e6+10,M=1e6+10,mod=1e9+7,inf=1e9+10;
    const int MAXN=5000001;
    int prime[MAXN];
    bool vis[MAXN];
    int sum[MAXN];
    int Prime(int n)
    {
        int cnt=0;
        memset(vis,0,sizeof(vis));
        for(int i=2;i<n;i++)
        {
            if(!vis[i])
            prime[cnt++]=i;
            for(int j=0;j<cnt&&i*prime[j]<n;j++)
            {
                vis[i*prime[j]]=1;
                if(i%prime[j]==0)
                break;
            }
        }
        return cnt;
    }
    int main()
    {
        int x,y,z,i,t;
        int cnt=Prime(MAXN);
        for(i=1;i<MAXN;i++)
        {
            int flag=i;
            for(t=0;t<cnt;t++)
            {
                if(flag==1)
                break;
                if(!vis[flag])
                {
                    sum[i]++;
                    break;
                }
                while(flag%prime[t]==0)
                {
                    flag/=prime[t];
                    sum[i]++;
                }
            }
            sum[i]+=sum[i-1];
        }
        int T;
        scanf("%d",&T);
        while(T--)
        {
            int a,b;
            scanf("%d%d",&a,&b);
            printf("%d
    ",sum[a]-sum[b]);
        }
        return 0;
    }
  • 相关阅读:
    最大团问题
    树的重心与相关性质
    2020年牛客算法入门课练习赛3 B
    牛客练习赛66 E
    浅谈后缀数组SA
    [随机化算法] 听天由命?浅谈Simulate Anneal模拟退火算法
    “优美的暴力”——树上启发式合并
    [线段树系列] LCT打延迟标记的正确姿势
    [Tarjan系列] Tarjan算法与有向图的SCC
    [Tarjan系列] 无向图e-DCC和v-DCC的缩点
  • 原文地址:https://www.cnblogs.com/jhz033/p/5743598.html
Copyright © 2011-2022 走看看