zoukankan      html  css  js  c++  java
  • SGU 106 The equation 扩展欧几里德

    106. The equation

    time limit per test: 0.25 sec.
    memory limit per test: 4096 KB

    There is an equation ax + by + c = 0. Given a,b,c,x1,x2,y1,y2 you must determine, how many integer roots of this equation are satisfy to the following conditions : x1<=x<=x2,   y1<=y<=y2. Integer root of this equation is a pair of integer numbers (x,y).

    Input

    Input contains integer numbers a,b,c,x1,x2,y1,y2 delimited by spaces and line breaks. All numbers are not greater than 108 by absolute value.

    Output

    Write answer to the output.

    Sample Input

    1 1 -3
    0 4
    0 4
    

    Sample Output

    4
    思路:ax+by=-c;
       扩展欧几里德求解;
       x=x0+b/gcd(a,b)*t;
       y=y0+a/gcd(a,b)*t;
    求x1<=x<=x2&&y1<=y<=y2的条件下,t的可行解;
       找到x的范围的t的可行解[lx,rx];
       同理 [ly,ry];
    ans=min(rx,ry)-max(lx,ly)+1;
    #include<bits/stdc++.h>
    using namespace std;
    #define ll __int64
    #define esp 1e-13
    const int N=1e3+10,M=1e6+1000,inf=1e9+10,mod=1000000007;
    void extend_Euclid(ll a, ll b, ll &x, ll &y)
    {
        if(b == 0)
        {
            x = 1;
            y = 0;
            return;
        }
        extend_Euclid(b, a % b, x, y);
        ll tmp = x;
        x = y;
        y = tmp - (a / b) * y;
    }
    ll gcd(ll a,ll b)
    {
        if(b==0)
            return a;
        return gcd(b,a%b);
    }
    int main()
    {
        ll a,b,c;
        ll lx,rx;
        ll ly,ry;
        scanf("%I64d%I64d%I64d",&a,&b,&c);
        scanf("%I64d%I64d",&lx,&rx);
        scanf("%I64d%I64d",&ly,&ry);
        c=-c;
        if(lx>rx||ly>ry)
        {
            printf("0
    ");
            return 0;
        }
        if (a == 0 && b == 0 && c == 0)
        {
            printf("%I64d
    ",(rx-lx+1) * (ry-ly+1));
            return 0;
        }
        if (a == 0 && b == 0)
        {
            printf("0
    ");
            return 0;
        }
        if (a == 0)
        {
            if (c % b != 0)
            {
                printf("0
    ");
                return 0;
            }
            ll y = c / b;
            if (y >= ly && y <= ry)
            {
                printf("%I64d
    ",rx - lx + 1);
                return 0;
            }
            else
            {
                printf("0
    ");
                return 0;
            }
        }
        if (b == 0)
        {
            if (c % a != 0)
            {
                printf("0
    ");
                return 0;
            }
            ll x = c / a;
            if (x >= lx && x <= rx)
            {
                printf("%I64d
    ",ry - ly + 1);
                return 0;
            }
            else
            {
                printf("0
    ");
                return 0;
            }
        }
        ll hh=gcd(abs(a),abs(b));
        if(c%hh!=0)
        {
            printf("0
    ");
            return 0;
        }
        else
        {
            ll x,y;
            extend_Euclid(abs(a),abs(b),x,y);
            x*=(c/hh);
            y*=(c/hh);
            if(a<0)
                x=-x;
            if(b<0)
                y=-y;
            a/=hh;
            b/=hh;
            ll tlx,trx,tly,trry;
            if(b>0)
            {
                ll l=lx-x;
                tlx=l/b;
                if(l>=0&&l%b)
                    tlx++;
                ll r=rx-x;
                trx=r/b;
                if(r<0&&r%b)
                    trx--;
            }
            else
            {
                b=-b;
                ll l=x-rx;
                tlx=l/b;
                if(l>=0&&l%b)
                    tlx++;
                ll r=x-lx;
                trx=r/b;
                if(r<0&&r%b)
                    trx--;
            }
            if(a>0)
            {
                ll l=-ry+y;
                tly=l/a;
                if(l>=0&&l%a)
                    tly++;
                ll r=-ly+y;
                trry=r/a;
                if(r<0&&r%a)
                    trry--;
            }
            else
            {
                a=-a;
                ll l=ly-y;
                tly=l/a;
                if(l>=0&&l%a)
                    tly++;
                ll r=ry-y;
                trry=r/a;
                if(r<0&&r%a)
                    trry--;
            }
            printf("%I64d
    ",(max(0LL,min(trry,trx)-max(tly,tlx)+1)));
            return 0;
        }
        return 0;
    }

  • 相关阅读:
    POJ 3037 Skiing(Dijkstra)
    HDU 1875 畅通工程再续(kruskal)
    HDU 1233 还是畅通工程(Kruskal)
    Java实现 LeetCode 754 到达终点数字(暴力+反向)
    Java实现 LeetCode 754 到达终点数字(暴力+反向)
    Java实现 LeetCode 754 到达终点数字(暴力+反向)
    Java实现 LeetCode 753 破解保险箱(递归)
    Java实现 LeetCode 753 破解保险箱(递归)
    Java实现 LeetCode 753 破解保险箱(递归)
    Java实现 LeetCode 752 打开转盘锁(暴力)
  • 原文地址:https://www.cnblogs.com/jhz033/p/5755075.html
Copyright © 2011-2022 走看看