zoukankan      html  css  js  c++  java
  • SGU 106 The equation 扩展欧几里德

    106. The equation

    time limit per test: 0.25 sec.
    memory limit per test: 4096 KB

    There is an equation ax + by + c = 0. Given a,b,c,x1,x2,y1,y2 you must determine, how many integer roots of this equation are satisfy to the following conditions : x1<=x<=x2,   y1<=y<=y2. Integer root of this equation is a pair of integer numbers (x,y).

    Input

    Input contains integer numbers a,b,c,x1,x2,y1,y2 delimited by spaces and line breaks. All numbers are not greater than 108 by absolute value.

    Output

    Write answer to the output.

    Sample Input

    1 1 -3
    0 4
    0 4
    

    Sample Output

    4
    思路:ax+by=-c;
       扩展欧几里德求解;
       x=x0+b/gcd(a,b)*t;
       y=y0+a/gcd(a,b)*t;
    求x1<=x<=x2&&y1<=y<=y2的条件下,t的可行解;
       找到x的范围的t的可行解[lx,rx];
       同理 [ly,ry];
    ans=min(rx,ry)-max(lx,ly)+1;
    #include<bits/stdc++.h>
    using namespace std;
    #define ll __int64
    #define esp 1e-13
    const int N=1e3+10,M=1e6+1000,inf=1e9+10,mod=1000000007;
    void extend_Euclid(ll a, ll b, ll &x, ll &y)
    {
        if(b == 0)
        {
            x = 1;
            y = 0;
            return;
        }
        extend_Euclid(b, a % b, x, y);
        ll tmp = x;
        x = y;
        y = tmp - (a / b) * y;
    }
    ll gcd(ll a,ll b)
    {
        if(b==0)
            return a;
        return gcd(b,a%b);
    }
    int main()
    {
        ll a,b,c;
        ll lx,rx;
        ll ly,ry;
        scanf("%I64d%I64d%I64d",&a,&b,&c);
        scanf("%I64d%I64d",&lx,&rx);
        scanf("%I64d%I64d",&ly,&ry);
        c=-c;
        if(lx>rx||ly>ry)
        {
            printf("0
    ");
            return 0;
        }
        if (a == 0 && b == 0 && c == 0)
        {
            printf("%I64d
    ",(rx-lx+1) * (ry-ly+1));
            return 0;
        }
        if (a == 0 && b == 0)
        {
            printf("0
    ");
            return 0;
        }
        if (a == 0)
        {
            if (c % b != 0)
            {
                printf("0
    ");
                return 0;
            }
            ll y = c / b;
            if (y >= ly && y <= ry)
            {
                printf("%I64d
    ",rx - lx + 1);
                return 0;
            }
            else
            {
                printf("0
    ");
                return 0;
            }
        }
        if (b == 0)
        {
            if (c % a != 0)
            {
                printf("0
    ");
                return 0;
            }
            ll x = c / a;
            if (x >= lx && x <= rx)
            {
                printf("%I64d
    ",ry - ly + 1);
                return 0;
            }
            else
            {
                printf("0
    ");
                return 0;
            }
        }
        ll hh=gcd(abs(a),abs(b));
        if(c%hh!=0)
        {
            printf("0
    ");
            return 0;
        }
        else
        {
            ll x,y;
            extend_Euclid(abs(a),abs(b),x,y);
            x*=(c/hh);
            y*=(c/hh);
            if(a<0)
                x=-x;
            if(b<0)
                y=-y;
            a/=hh;
            b/=hh;
            ll tlx,trx,tly,trry;
            if(b>0)
            {
                ll l=lx-x;
                tlx=l/b;
                if(l>=0&&l%b)
                    tlx++;
                ll r=rx-x;
                trx=r/b;
                if(r<0&&r%b)
                    trx--;
            }
            else
            {
                b=-b;
                ll l=x-rx;
                tlx=l/b;
                if(l>=0&&l%b)
                    tlx++;
                ll r=x-lx;
                trx=r/b;
                if(r<0&&r%b)
                    trx--;
            }
            if(a>0)
            {
                ll l=-ry+y;
                tly=l/a;
                if(l>=0&&l%a)
                    tly++;
                ll r=-ly+y;
                trry=r/a;
                if(r<0&&r%a)
                    trry--;
            }
            else
            {
                a=-a;
                ll l=ly-y;
                tly=l/a;
                if(l>=0&&l%a)
                    tly++;
                ll r=ry-y;
                trry=r/a;
                if(r<0&&r%a)
                    trry--;
            }
            printf("%I64d
    ",(max(0LL,min(trry,trx)-max(tly,tlx)+1)));
            return 0;
        }
        return 0;
    }

  • 相关阅读:
    面试问题之C++语言:C++中指针和引用的区别
    手撕代码:最长回文子串
    手撕代码:求字符串最长回文子序列
    手撕代码:用宏来实现获取数组的大小
    手撕代码之线程:thread类简单使用
    面试问题之计算机网络:OSI七层网络模型及相关协议
    C++各种输入
    C printf格式化输出
    记一次mac 安装MySQL-python 的惨痛经历
    记一次tomcat程序运行慢的处理过程
  • 原文地址:https://www.cnblogs.com/jhz033/p/5755075.html
Copyright © 2011-2022 走看看