zoukankan      html  css  js  c++  java
  • SGU 106 The equation 扩展欧几里德

    106. The equation

    time limit per test: 0.25 sec.
    memory limit per test: 4096 KB

    There is an equation ax + by + c = 0. Given a,b,c,x1,x2,y1,y2 you must determine, how many integer roots of this equation are satisfy to the following conditions : x1<=x<=x2,   y1<=y<=y2. Integer root of this equation is a pair of integer numbers (x,y).

    Input

    Input contains integer numbers a,b,c,x1,x2,y1,y2 delimited by spaces and line breaks. All numbers are not greater than 108 by absolute value.

    Output

    Write answer to the output.

    Sample Input

    1 1 -3
    0 4
    0 4
    

    Sample Output

    4
    思路:ax+by=-c;
       扩展欧几里德求解;
       x=x0+b/gcd(a,b)*t;
       y=y0+a/gcd(a,b)*t;
    求x1<=x<=x2&&y1<=y<=y2的条件下,t的可行解;
       找到x的范围的t的可行解[lx,rx];
       同理 [ly,ry];
    ans=min(rx,ry)-max(lx,ly)+1;
    #include<bits/stdc++.h>
    using namespace std;
    #define ll __int64
    #define esp 1e-13
    const int N=1e3+10,M=1e6+1000,inf=1e9+10,mod=1000000007;
    void extend_Euclid(ll a, ll b, ll &x, ll &y)
    {
        if(b == 0)
        {
            x = 1;
            y = 0;
            return;
        }
        extend_Euclid(b, a % b, x, y);
        ll tmp = x;
        x = y;
        y = tmp - (a / b) * y;
    }
    ll gcd(ll a,ll b)
    {
        if(b==0)
            return a;
        return gcd(b,a%b);
    }
    int main()
    {
        ll a,b,c;
        ll lx,rx;
        ll ly,ry;
        scanf("%I64d%I64d%I64d",&a,&b,&c);
        scanf("%I64d%I64d",&lx,&rx);
        scanf("%I64d%I64d",&ly,&ry);
        c=-c;
        if(lx>rx||ly>ry)
        {
            printf("0
    ");
            return 0;
        }
        if (a == 0 && b == 0 && c == 0)
        {
            printf("%I64d
    ",(rx-lx+1) * (ry-ly+1));
            return 0;
        }
        if (a == 0 && b == 0)
        {
            printf("0
    ");
            return 0;
        }
        if (a == 0)
        {
            if (c % b != 0)
            {
                printf("0
    ");
                return 0;
            }
            ll y = c / b;
            if (y >= ly && y <= ry)
            {
                printf("%I64d
    ",rx - lx + 1);
                return 0;
            }
            else
            {
                printf("0
    ");
                return 0;
            }
        }
        if (b == 0)
        {
            if (c % a != 0)
            {
                printf("0
    ");
                return 0;
            }
            ll x = c / a;
            if (x >= lx && x <= rx)
            {
                printf("%I64d
    ",ry - ly + 1);
                return 0;
            }
            else
            {
                printf("0
    ");
                return 0;
            }
        }
        ll hh=gcd(abs(a),abs(b));
        if(c%hh!=0)
        {
            printf("0
    ");
            return 0;
        }
        else
        {
            ll x,y;
            extend_Euclid(abs(a),abs(b),x,y);
            x*=(c/hh);
            y*=(c/hh);
            if(a<0)
                x=-x;
            if(b<0)
                y=-y;
            a/=hh;
            b/=hh;
            ll tlx,trx,tly,trry;
            if(b>0)
            {
                ll l=lx-x;
                tlx=l/b;
                if(l>=0&&l%b)
                    tlx++;
                ll r=rx-x;
                trx=r/b;
                if(r<0&&r%b)
                    trx--;
            }
            else
            {
                b=-b;
                ll l=x-rx;
                tlx=l/b;
                if(l>=0&&l%b)
                    tlx++;
                ll r=x-lx;
                trx=r/b;
                if(r<0&&r%b)
                    trx--;
            }
            if(a>0)
            {
                ll l=-ry+y;
                tly=l/a;
                if(l>=0&&l%a)
                    tly++;
                ll r=-ly+y;
                trry=r/a;
                if(r<0&&r%a)
                    trry--;
            }
            else
            {
                a=-a;
                ll l=ly-y;
                tly=l/a;
                if(l>=0&&l%a)
                    tly++;
                ll r=ry-y;
                trry=r/a;
                if(r<0&&r%a)
                    trry--;
            }
            printf("%I64d
    ",(max(0LL,min(trry,trx)-max(tly,tlx)+1)));
            return 0;
        }
        return 0;
    }

  • 相关阅读:
    如何用js解网页中间内容的高度自适应
    常见Js获取高宽度的方法
    CSS3 转换 transform
    CSS3 过渡 transition
    CSS3 动画 animation
    当页面内容不够的时候,如何让footer一直固定底部显示
    如何用js判断是否为手机访问
    用css解决table文字溢出控制td显示字数
    jquery实现全选和反选功能
    JS中filter的用法
  • 原文地址:https://www.cnblogs.com/jhz033/p/5755075.html
Copyright © 2011-2022 走看看