zoukankan      html  css  js  c++  java
  • poj 3254 Corn Fields 状态压缩dp

    Corn Fields
    Time Limit: 2000MS   Memory Limit: 65536K
         

    Description

    Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ≤ 12) square parcels. He wants to grow some yummy corn for the cows on a number of squares. Regrettably, some of the squares are infertile and can't be planted. Canny FJ knows that the cows dislike eating close to each other, so when choosing which squares to plant, he avoids choosing squares that are adjacent; no two chosen squares share an edge. He has not yet made the final choice as to which squares to plant.

    Being a very open-minded man, Farmer John wants to consider all possible options for how to choose the squares for planting. He is so open-minded that he considers choosing no squares as a valid option! Please help Farmer John determine the number of ways he can choose the squares to plant.

    Input

    Line 1: Two space-separated integers: M and N
    Lines 2..M+1: Line i+1 describes row i of the pasture with N space-separated integers indicating whether a square is fertile (1 for fertile, 0 for infertile)

    Output

    Line 1: One integer: the number of ways that FJ can choose the squares modulo 100,000,000.

    Sample Input

    2 3
    1 1 1
    0 1 0

    Sample Output

    9

    Hint

    Number the squares as follows:
    1 2 3
      4  

    There are four ways to plant only on one squares (1, 2, 3, or 4), three ways to plant on two squares (13, 14, or 34), 1 way to plant on three squares (134), and one way to plant on no squares. 4+3+1+1=9.

    Source

    思路:状态压缩入门题;
    #include<cstdio>
    #include<cstring>
    using namespace std;
    #define ll long long
    #define esp 1e-13
    const int N=5e4+10,M=1e6+50000,inf=1e9+10,mod=1000000007;
    ll dp[13][N];
    ll mp[13];
    int check(int i,int t)
    {
        int base=mp[i];
        while(t)
        {
            if(base%2==0&&t%2==1)
            return 0;
            base>>=1;
            t>>=1;
        }
        return 1;
    }
    int check2(int t)
    {
        if(t&(t<<1))
        return 0;
        return 1;
    }
    int check3(int i,int t)
    {
        if(i&t)
        return 0;
        return 1;
    }
    int main()
    {
        int x,y,i,z,t;
        while(~scanf("%d%d",&x,&y))
        {
            memset(dp,0,sizeof(dp));
            for(i=1;i<=x;i++)
            {
                mp[i]=0;
                for(t=1;t<=y;t++)
                {
                    scanf("%d",&z);
                    mp[i]=mp[i]*2+z;
                }
            }
            dp[0][0]=1;
            int u=1;
            for(i=1;i<=y;i++)
            u*=2;
            for(i=1;i<=x;i++)
            {
                for(t=0;t<u;t++)
                {
                    if(check2(t)==0||check(i,t)==0)
                    continue;
                    for(int j=0;j<u;j++)
                    {
                        if(!check3(t,j))
                        continue;
                        dp[i][t]+=dp[i-1][j];
                        dp[i][t]%=100000000;
                    }
                }
            }
            ll ans=0;
            for(i=0;i<u;i++)
            ans+=dp[x][i],ans%=100000000;
            printf("%lld
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    JNI中java类型的简写
    JNI 资源释放
    【翻译自mos文章】当指定asm disk 为FRA时,11.2.0.3的dbua hang住
    Codeforces 85D Sum of Medians(线段树)
    Win8.1应用开发之异步编程
    VC++的内联汇编
    WPF实现界面动态布局
    找唯一不出现三次而出现1次的数子O(n)位运算算法
    模块管理常规功能自己定义系统的设计与实现(31--第三阶段 权限设计[1])
    Codeforces Round #FF (Div. 2):C. DZY Loves Sequences
  • 原文地址:https://www.cnblogs.com/jhz033/p/5767968.html
Copyright © 2011-2022 走看看