zoukankan      html  css  js  c++  java
  • Codeforces Round #272 (Div. 2) C. Dreamoon and Sums 数学

    C. Dreamoon and Sums
    time limit per test
    1.5 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Dreamoon loves summing up something for no reason. One day he obtains two integers a and b occasionally. He wants to calculate the sum of all nice integers. Positive integer x is called nice if  and , where k is some integer number in range[1, a].

    By  we denote the quotient of integer division of x and y. By  we denote the remainder of integer division of x andy. You can read more about these operations here: http://goo.gl/AcsXhT.

    The answer may be large, so please print its remainder modulo 1 000 000 007 (109 + 7). Can you compute it faster than Dreamoon?

    Input

    The single line of the input contains two integers ab (1 ≤ a, b ≤ 107).

    Output

    Print a single integer representing the answer modulo 1 000 000 007 (109 + 7).

    Examples
    input
    1 1
    output
    0
    input
    2 2
    output
    8
    Note

    For the first sample, there are no nice integers because  is always zero.

    For the second sample, the set of nice integers is {3, 5}.

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    #define pi (4*atan(1.0))
    #define eps 1e-14
    const int N=1e5+10,M=1e6+10,inf=1e9+10,mod=1e9+7;
    int main()
    {
        ll a,b;
        scanf("%lld%lld",&a,&b);
        ll ans=0;
        for(ll i=1;i<b;i++)
        {
            ans=ans+(a*((i*b+i)%mod))%mod+(((b*i)%mod)*((a*(a- 1)/2)%mod))%mod;
            ans%=mod;
        }
        printf("%lld
    ",ans);
        return 0;
    }
  • 相关阅读:
    JAVA实现的异步redisclient
    权限表设计
    操作系统之存储管理(续)
    leetcode第一刷_Jump Game
    linux之stat函数解析
    重温微积分 —— 偏微分与链式法则
    重温微积分 —— 偏微分与链式法则
    所谓敏感(数字的敏感)
    所谓敏感(数字的敏感)
    推理集 —— 特殊的工具
  • 原文地址:https://www.cnblogs.com/jhz033/p/5966585.html
Copyright © 2011-2022 走看看