zoukankan      html  css  js  c++  java
  • Codeforces Round #307 (Div. 2) D. GukiZ and Binary Operations 矩阵快速幂优化dp

    D. GukiZ and Binary Operations
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    We all know that GukiZ often plays with arrays.

    Now he is thinking about this problem: how many arrays a, of length n, with non-negative elements strictly less then 2l meet the following condition: ? Here operation  means bitwise AND (in Pascalit is equivalent to and, in C/C++/Java/Python it is equivalent to &), operation  means bitwise OR (in Pascal it is equivalent to , in C/C++/Java/Python it is equivalent to |).

    Because the answer can be quite large, calculate it modulo m. This time GukiZ hasn't come up with solution, and needs you to help him!

    Input

    First and the only line of input contains four integers nklm (2 ≤ n ≤ 1018, 0 ≤ k ≤ 1018, 0 ≤ l ≤ 64, 1 ≤ m ≤ 109 + 7).

    Output

    In the single line print the number of arrays satisfying the condition above modulo m.

    Examples
    input
    2 1 2 10
    output
    3
    input
    2 1 1 3
    output
    1
    input
    3 3 2 10
    output
    9
    Note

    In the first sample, satisfying arrays are {1, 1}, {3, 1}, {1, 3}.

    In the second sample, only satisfying array is {1, 1}.

    In the third sample, satisfying arrays are {0, 3, 3}, {1, 3, 2}, {1, 3, 3}, {2, 3, 1}, {2, 3, 3}, {3, 3, 0}, {3, 3, 1}, {3, 3, 2}, {3, 3, 3}.

    思路:首先看到或,并就想将这个数拆开为二进制的01串,分别考虑每一位的0,1;

       当前k的那个位置为0时,表示a1-an中没有两个相邻的1;

       同理,当前k为为1时,表示a1-an中有两个相邻的1;2^n,减去0的方案即是;

       刚刚开始一直在想组合数学的求法,发现不好写(。。。我也不会)

       后来发现dp可以做,但是n很大;

       dp方程:dp[i][0]=dp[i-1][1]+dp[i-1][0];

           dp[i][1]=dp[i-1][0];

       dp[i][j]表示第i位为j的无相邻1的方案数;

       乍一看很像斐波那契,构造矩阵;

                     [  1  ,   1   ]

       [ dp[i-1][0] , dp[i-1][1] ]  *[  1  ,   0   ]     =[   dp[i][0]   ,   dp[i][1]   ];

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    #define pi (4*atan(1.0))
    #define eps 1e-14
    #define bug(x,y) cout<<"bug"<<x<<" "<<y<<endl;
    #define bug(x) cout<<"xxx "<<x<<endl;
    const int N=1e5+10,M=1e6+10,inf=2e9+10,mod=1e9+7;
    const ll INF=1e18+10;
    ll MOD;
    struct Matrix
    {
        ll a[2][2];
        Matrix()
        {
            memset(a,0,sizeof(a));
        }
        void init()
        {
            for(int i=0;i<2;i++)
                for(int j=0;j<2;j++)
                    a[i][j]=(i==j);
        }
        Matrix operator + (const Matrix &B)const
        {
            Matrix C;
            for(int i=0;i<2;i++)
                for(int j=0;j<2;j++)
                    C.a[i][j]=(a[i][j]+B.a[i][j])%MOD;
            return C;
        }
        Matrix operator * (const Matrix &B)const
        {
            Matrix C;
            for(int i=0;i<2;i++)
                for(int k=0;k<2;k++)
                    for(int j=0;j<2;j++)
                        C.a[i][j]=(C.a[i][j]+1LL*a[i][k]*B.a[k][j])%MOD;
            return C;
        }
        Matrix operator ^ (const ll &t)const
        {
            Matrix A=(*this),res;
            res.init();
            ll p=t;
            while(p)
            {
                if(p&1)res=res*A;
                A=A*A;
                p>>=1;
            }
            return res;
        }
    };
    ll quickmod(ll a,ll b,ll c)
    {
        ll ans=1;
        while(b)
        {
            if(b&1)ans=(ans*a)%c;
            b>>=1;
            a=(a*a)%c;
        }
        return ans;
    }
    int main()
    {
        ll n,k,m,l;
        cin>>n>>k>>l>>m;
        MOD=m;
        Matrix base,ans;
        base.a[0][0]=base.a[0][1]=base.a[1][0]=1;
        base.a[1][1]=0;
        ans.a[0][0]=ans.a[0][1]=1;
        ans.a[1][0]=ans.a[1][1]=0;
        ans=ans*(base^(n-1));
        ll zero=(ans.a[0][0]+ans.a[0][1])%m;
        ll one=((quickmod(2LL,n,m)-zero)%m+m)%m;
        //cout<<zero<<" "<<one<<endl;
        ll out=1;
        if((l<=62&&k>=(1LL<<l)))return puts("0");
        for(ll i=l-1;i>=0;i--)
        {
            if(i>60)
                out*=zero;
            else
            {
                ll x=(1LL<<i)&k;
                if(x)
                    out*=one;
                else
                    out*=zero;
            }
            out%=m;
        }
        printf("%lld
    ",out%m);
        return 0;
    }
  • 相关阅读:
    定时任务 cron 学习
    [转]交换机互联不同 vlan 及不同网段通信问题总结
    H3C Cloud Lab配置不生效的解决办法
    使用NPTP+SecureCRT连接H3C Cloud Lab中的路由器
    postgresql 创建索引
    php多进程应用场景实例详解
    pcntl扩展学习
    Kubernetes进阶实战读书笔记:Daemonset控制器|Job控制器
    Kubernetes进阶实战读书笔记:资源需求及限制
    Kubernetes进阶实战读书笔记:POD对象的生命周期(探针检测)
  • 原文地址:https://www.cnblogs.com/jhz033/p/6417099.html
Copyright © 2011-2022 走看看