zoukankan      html  css  js  c++  java
  • hdu 3709 Balanced Number 数位dp

    Balanced Number

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)


    Problem Description
    A balanced number is a non-negative integer that can be balanced if a pivot is placed at some digit. More specifically, imagine each digit as a box with weight indicated by the digit. When a pivot is placed at some digit of the number, the distance from a digit to the pivot is the offset between it and the pivot. Then the torques of left part and right part can be calculated. It is balanced if they are the same. A balanced number must be balanced with the pivot at some of its digits. For example, 4139 is a balanced number with pivot fixed at 3. The torqueses are 4*2 + 1*1 = 9 and 9*1 = 9, for left part and right part, respectively. It's your job
    to calculate the number of balanced numbers in a given range [x, y].
     
    Input
    The input contains multiple test cases. The first line is the total number of cases T (0 < T ≤ 30). For each case, there are two integers separated by a space in a line, x and y. (0 ≤ x ≤ y ≤ 1018).
     
    Output
    For each case, print the number of balanced numbers in the range [x, y] in a line.
     
    Sample Input
    2 0 9 7604 24324
     
    Sample Output
    10 897
     
    Author
    GAO, Yuan
     
    Source
     

     思路:加一维枚举中间点即可;

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<string>
    #include<queue>
    #include<algorithm>
    #include<stack>
    #include<cstring>
    #include<vector>
    #include<list>
    #include<set>
    #include<map>
    using namespace std;
    #define ll long long
    #define pi (4*atan(1.0))
    #define eps 1e-4
    #define bug(x)  cout<<"bug"<<x<<endl;
    const int N=1e5+10,M=1e6+10,inf=2147483647;
    const ll INF=1e18+10,mod=2147493647;
    ll f[30][30][2000],bit[60];
    ll dp(int pos,int sum,int p,int flag)
    {
        if(sum<0)return 0;
        if(pos==0)return (sum==0);
        if(flag&&f[pos][p][sum]!=-1)return f[pos][p][sum];
        int x=flag?9:bit[pos];
        ll ans=0;
        for(int i=0;i<=x;i++)
        {
            ans+=dp(pos-1,sum+(pos-p)*i,p,flag||i<x);
        }
        if(flag)f[pos][p][sum]=ans;
        return ans;
    }
    ll getans(ll x,int p)
    {
        int len=0;
        while(x)
        {
            bit[++len]=x%10;
            x/=10;
        }
        return dp(len,0,p,0);
    }
    int main()
    {
        int T;
        memset(f,-1,sizeof(f));
        scanf("%d",&T);
        while(T--)
        {
            ll l,r;
            scanf("%lld%lld",&l,&r);
            ll ans=0;
            if(!l)
            {
                ans++;
                l=max(1LL,l);
            }
            for(int i=1;i<=19;i++)
                ans+=getans(r,i)-getans(l-1,i);
            printf("%lld
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    VS 2013 未找到与约束contractname Microsoft.VisualStudio.Utilities.IContentTypeRegistryService...匹配的导出[vs故障]【转】
    leetcode(一)Word Pattern
    [LeetCode]ZigZag Conversion
    C#元组示例详解
    C#使用委托进行异步编程。
    jQuery常用的元素查找方法总结
    泛型集合【转载】
    NPOI使用手册[转]
    总结Controller向View传值的方式(转)
    HttpHelper类
  • 原文地址:https://www.cnblogs.com/jhz033/p/6595249.html
Copyright © 2011-2022 走看看