zoukankan      html  css  js  c++  java
  • hdu 3829 Cat VS Dog 二分图匹配 最大点独立集

    Cat VS Dog

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)



    Problem Description
    The zoo have N cats and M dogs, today there are P children visiting the zoo, each child has a like-animal and a dislike-animal, if the child's like-animal is a cat, then his/hers dislike-animal must be a dog, and vice versa.
    Now the zoo administrator is removing some animals, if one child's like-animal is not removed and his/hers dislike-animal is removed, he/she will be happy. So the administrator wants to know which animals he should remove to make maximum number of happy children.
     
    Input
    The input file contains multiple test cases, for each case, the first line contains three integers N <= 100, M <= 100 and P <= 500.
    Next P lines, each line contains a child's like-animal and dislike-animal, C for cat and D for dog. (See sample for details)
     
    Output
    For each case, output a single integer: the maximum number of happy children.
     
    Sample Input
    1 1 2 C1 D1 D1 C1 1 2 4 C1 D1 C1 D1 C1 D2 D2 C1
     
    Sample Output
    1 3
    Hint
    Case 2: Remove D1 and D2, that makes child 1, 2, 3 happy.
     
    Source

    题意:给你m只狗跟n只猫,p个人,每个人有一只喜欢和不喜欢的动物;

       可以选取一些动物,使得满足条件的人最多;

       满足条件:一个人的喜欢的动物在,并且不喜欢的动物不在;

    思路:二分图匹配最大点独立集模型=所有人-最大匹配;

       把所有人的对立的关系连边;

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<string>
    #include<queue>
    #include<algorithm>
    #include<stack>
    #include<cstring>
    #include<vector>
    #include<list>
    #include<set>
    #include<map>
    #include<stdlib.h>
    #include<time.h>
    using namespace std;
    #define LL long long
    #define pi (4*atan(1.0))
    #define eps 1e-6
    #define bug(x)  cout<<"bug"<<x<<endl;
    const int N=1e3+10,M=1e6+10,inf=1e9+10;
    const LL INF=5e17+10,mod=1e9+7;
    
    int n,m;
    int mp[N][N];
    int linker[N];
    bool used[N];
    bool dfs(int a)
    {
        for(int i=0;i<n;i++)
          if(mp[a][i]&&!used[i])
          {
              used[i]=true;
              if(linker[i]==-1||dfs(linker[i]))
              {
                  linker[i]=a;
                  return true;
              }
          }
          return false;
    }
    int hungary()
    {
        int result=0;
        memset(linker,-1,sizeof(linker));
        for(int i=0;i<n;i++)
        {
            memset(used,0,sizeof(used));
            if(dfs(i))  result++;
        }
        return result;
    }
    string l[N],disl[N];
    int main()
    {
        int c,d;
        while(~scanf("%d%d%d",&c,&d,&n))
        {
            memset(mp,0,sizeof(mp));
            for(int i=0;i<n;i++)
            cin>>l[i]>>disl[i];
            for(int i=0;i<n;i++)
            {
                for(int j=0;j<n;j++)
                {
                    if(l[i]==disl[j]||disl[i]==l[j])
                        mp[i][j]=1;
                }
            }
            int cnt=hungary();
            printf("%d
    ",n-cnt/2);
        }
        return 0;
    }
  • 相关阅读:
    安卓触摸事件探究
    android关于canvas,path,paint非常好的讲解
    android的Shader
    android中view的生命周期
    JAVA的Random类(转)
    lniux 64位导致adb无法运行解决方案
    [转]Android中attrs.xml文件的使用详解
    FlowLayout
    大数据平台架构技术选型与场景运用(转)
    mysql--java类型对应表
  • 原文地址:https://www.cnblogs.com/jhz033/p/6936463.html
Copyright © 2011-2022 走看看