zoukankan      html  css  js  c++  java
  • Educational Codeforces Round 23 D. Imbalanced Array 单调栈

    D. Imbalanced Array
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    You are given an array a consisting of n elements. The imbalance value of some subsegment of this array is the difference between the maximum and minimum element from this segment. The imbalance value of the array is the sum of imbalance values of all subsegments of this array.

    For example, the imbalance value of array [1, 4, 1] is 9, because there are 6 different subsegments of this array:

    • [1] (from index 1 to index 1), imbalance value is 0;
    • [1, 4] (from index 1 to index 2), imbalance value is 3;
    • [1, 4, 1] (from index 1 to index 3), imbalance value is 3;
    • [4] (from index 2 to index 2), imbalance value is 0;
    • [4, 1] (from index 2 to index 3), imbalance value is 3;
    • [1] (from index 3 to index 3), imbalance value is 0;

    You have to determine the imbalance value of the array a.

    Input

    The first line contains one integer n (1 ≤ n ≤ 106) — size of the array a.

    The second line contains n integers a1, a2... an (1 ≤ ai ≤ 106) — elements of the array.

    Output

    Print one integer — the imbalance value of a.

    Example
    Input
    3
    1 4 1
    Output
    9

    题意:给你n个数,一个区间的贡献是区间最大值-区间最小值,求所有区间贡献和。

    思路:首先想到n*n的rmq,明显超时。

       换个角度,枚举每个数作为最小值的区间个数,枚举每个数作为最大值的区间个数;

       怎么算呢,例如求最小值的区间,找出左边有x个比其大的,右边x个比其大的,区间的个数为x*y;

       这个用单调栈可以O(n)处理,注意需要半开半闭;

      

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<string>
    #include<queue>
    #include<algorithm>
    #include<stack>
    #include<cstring>
    #include<vector>
    #include<list>
    #include<set>
    #include<map>
    #include<bitset>
    #include<time.h>
    using namespace std;
    #define LL long long
    #define pi (4*atan(1.0))
    #define eps 1e-4
    #define bug(x)  cout<<"bug"<<x<<endl;
    const int N=1e6+10,M=1e6+10,inf=2147483647,mod=1e9+7;
    const LL INF=1e18+10,MOD=1e9+7;
    
    int a[N],d[N];
    int zn[N],yn[N];
    int zx[N],yx[N];
    int main()
    {
        int n;
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]);
        a[0]=0;
        int k=0;d[++k]=0;
        for(int i=1;i<=n;i++)
        {
            while(a[d[k]]>=a[i])k--;
            zn[i]=d[k];
            d[++k]=i;
        }
        a[n+1]=0;
        k=0;d[++k]=n+1;
        for(int i=n;i>=1;i--)
        {
            while(a[d[k]]>a[i])k--;
            yn[i]=d[k];
            d[++k]=i;
        }
        a[0]=1e6+10;
        k=0;d[++k]=0;
        for(int i=1;i<=n;i++)
        {
            while(a[d[k]]<=a[i])k--;
            zx[i]=d[k];
            d[++k]=i;
        }
        a[n+1]=1e6+10;
        k=0;d[++k]=n+1;
        for(int i=n;i>=1;i--)
        {
            while(a[d[k]]<a[i])k--;
            yx[i]=d[k];
            d[++k]=i;
        }
        LL ans=0;
        for(int i=1;i<=n;i++)
        {
            ans+=1LL*(yx[i]-i)*(i-zx[i])*a[i];
            ans-=1LL*(yn[i]-i)*(i-zn[i])*a[i];
        }
        cout<<ans<<endl;
        return 0;
    }
  • 相关阅读:
    浏览器渲染流程
    MVC模式
    传统的DOM是如何进行渲染的
    报文的概念及理解
    单页面开发与多页面开发的优缺点
    第4次作业
    售票系统
    第三次作业
    第二次作业
    第一次作业
  • 原文地址:https://www.cnblogs.com/jhz033/p/7074378.html
Copyright © 2011-2022 走看看