zoukankan      html  css  js  c++  java
  • hdu 6134 Battlestation Operational 莫比乌斯反演

    Battlestation Operational

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)



    Problem Description
    > The Death Star, known officially as the DS-1 Orbital Battle Station, also known as the Death Star I, the First Death Star, Project Stardust internally, and simply the Ultimate Weapon in early development stages, was a moon-sized, deep-space mobile battle station constructed by the Galactic Empire. Designed to fire a single planet-destroying superlaser powered by massive kyber crystals, it was the pet project of the Emperor, Darth Vader, and its eventual commander Grand Moff Wilhuff Tarkin to expound the military philosophy of the aptly named Tarkin Doctrine.
    >
    > — Wookieepedia

    In the story of the Rogue One, the rebels risked their lives stolen the construction plan of the Death Star before it can cause catastrophic damage to the rebel base. According to the documents, the main weapon of the Death Star, the Superlaser, emits asymmetric energy in the battlefield that cause photons to annihilate and burns everything in a single shot.

    You are assigned the task to estimate the damage of one shot of the Superlaser. 

    Assuming that the battlefield is an n×n grid. The energy field ignited by the Superlaser is asymmetric over the grid. For the cell at i-th row and j-th column, i/junits of damage will be caused. Furthermore, due to the quantum effects, the energies in a cell cancel out if gcd(i,j)1 or i<j.

    The figure below illustrates the damage caused to each cell for n=100. A cell in black indicates that this cell will not be damaged due to the quantum effects. Otherwise, different colors denote different units of damages.

    Your should calculate the total damage to the battlefield. Formally, you should compute
    f(n)=i=1nj=1iij[(i,j)=1],


    where [(i,j)=1] evaluates to be 1 if gcd(i,j)=1, otherwise 0.
     
    Input
    There are multiple test cases.

    Each line of the input, there is an integer n (1n106), as described in the problem. 

    There are up to 104 test cases.
     
    Output
    For each test case, output one integer in one line denoting the total damage of the Superlaser, f(n) mod 109+7.
     
    Sample Input
    1 2 3 10
     
    Sample Output
    1 3 8 110
     
    Source

     不想写题解!!!!!!!!!

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<string>
    #include<queue>
    #include<algorithm>
    #include<stack>
    #include<cstring>
    #include<vector>
    #include<list>
    #include<set>
    #include<map>
    #include<bitset>
    #include<time.h>
    #include<bits/stdc++.h>
    using namespace std;
    #define LL long long
    #define pi (4*atan(1.0))
    #define eps 1e-4
    #define bug(x)  cout<<"bug"<<x<<endl;
    const int N=3e4+10,M=1e6+10000,inf=1e9+7,MOD=1e9+7;
    const LL INF=1e18+10,mod=1e9+7;
    
    int mu[M], p[M], np[M], cnt;
    LL smu[M];
    void init()
    {
        mu[1]=1;
        for(int i=2; i<M; ++i)
        {
            if(!np[i]) p[++cnt]=i, mu[i]=-1;
            for(int j=1; j<=cnt && i*p[j]<M ; ++j)
            {
                int t=i*p[j];
                np[t]=1;
                if(i%p[j]==0)
                {
                    mu[t]=0;
                    break;
                }
                mu[t]=-mu[i];
            }
        }
        for(int i=1; i<M; i++)
            smu[i]=smu[i-1]+mu[i],smu[i]=(smu[i]%mod+mod)%mod;
    }
    LL a[M],sum[M],sum2[M];
    void init1()
    {
        for(int j=1; j<=1000010; j++)
        {
            a[j]+=1;
            a[j+1]-=1;
            a[j+1]=(a[j+1]%mod+mod)%mod;
            a[j]=(a[j]%mod+mod)%mod;
            for(int k=2;;k++)
            {
                int L=(k-1)*j+1;
                int R=k*j+1;
                a[L]+=k;
                a[L]%=mod;
                if(R>=M)break;
                a[R]-=k;
                a[R]=(a[R]%mod+mod)%mod;
            }
        }
        for(int i=1; i<M; i++)
            sum[i]=sum[i-1]+a[i],sum[i]%=mod;
        for(int i=1;i<M;i++)
            sum2[i]=sum2[i-1]+sum[i],sum2[i]%=mod;
    }
    int main()
    {
        init();
        init1();
        int n;
        while(~scanf("%d",&n))
        {
            LL ans=0;
            int last=0;
            for(int i=1; i<=n; i=last+1)
            {
                last=(n/(n/i));
                ans+=(((smu[last]-smu[i-1]+mod)%mod)*sum2[n/i])%mod;
                ans=(ans%mod+mod)%mod;
            }
            printf("%lld
    ",ans);
        }
        return 0;
    }

    Battlestation Operational

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 20    Accepted Submission(s): 3


    Problem Description
    > The Death Star, known officially as the DS-1 Orbital Battle Station, also known as the Death Star I, the First Death Star, Project Stardust internally, and simply the Ultimate Weapon in early development stages, was a moon-sized, deep-space mobile battle station constructed by the Galactic Empire. Designed to fire a single planet-destroying superlaser powered by massive kyber crystals, it was the pet project of the Emperor, Darth Vader, and its eventual commander Grand Moff Wilhuff Tarkin to expound the military philosophy of the aptly named Tarkin Doctrine.
    >
    > — Wookieepedia

    In the story of the Rogue One, the rebels risked their lives stolen the construction plan of the Death Star before it can cause catastrophic damage to the rebel base. According to the documents, the main weapon of the Death Star, the Superlaser, emits asymmetric energy in the battlefield that cause photons to annihilate and burns everything in a single shot.

    You are assigned the task to estimate the damage of one shot of the Superlaser. 

    Assuming that the battlefield is an n×n grid. The energy field ignited by the Superlaser is asymmetric over the grid. For the cell at i-th row and j-th column, i/junits of damage will be caused. Furthermore, due to the quantum effects, the energies in a cell cancel out if gcd(i,j)1 or i<j.

    The figure below illustrates the damage caused to each cell for n=100. A cell in black indicates that this cell will not be damaged due to the quantum effects. Otherwise, different colors denote different units of damages.

    Your should calculate the total damage to the battlefield. Formally, you should compute
    f(n)=i=1nj=1iij[(i,j)=1],


    where [(i,j)=1] evaluates to be 1 if gcd(i,j)=1, otherwise 0.
     
    Input
    There are multiple test cases.

    Each line of the input, there is an integer n (1n106), as described in the problem. 

    There are up to 104 test cases.
     
    Output
    For each test case, output one integer in one line denoting the total damage of the Superlaser, f(n) mod 109+7.
     
    Sample Input
    1 2 3 10
     
    Sample Output
    1 3 8 110
     
    Source
  • 相关阅读:
    一个由“ YYYYMMdd ”引发的惨案 !元旦来临前的警惕
    elasticJob 自定义任务参数
    java 生成GUID
    java ArrayList和LinkedList的区别
    Linux下配置python Jupyter远程访问
    《Go并发编程实战》系列二:多线程编程
    《Go并发编程实战》系列一:多进程编程
    《Go并发编程实战》学习基础
    归并排序递归方式和非递归(Java)
    滕讯一面总结
  • 原文地址:https://www.cnblogs.com/jhz033/p/7383073.html
Copyright © 2011-2022 走看看