zoukankan      html  css  js  c++  java
  • hdu 3208 Integer’s Power 筛法

    Integer’s Power

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)



    Problem Description
    LMY and YY are number theory lovers. They like to find and solve some interesting number theory problems together. One day, they become interested in some special numbers, which can be expressed as powers of smaller numbers.

    For example, 9=3^2, 64=2^6, 1000=10^3 …

    For a given positive integer y, if we can find a largest integer k and a smallest positive integer x, such that x^k=y, then the power of y is regarded as k.
    It is very easy to find the power of an integer. For example:

    The power of 9 is 2.
    The power of 64 is 6.
    The power of 1000 is 3.
    The power of 99 is 1.
    The power of 1 does not exist.

    But YY wants to calculate the sum of the power of the integers from a to b. It seems not easy. Can you help him?
     
    Input
    The input consists of multiple test cases.
    For each test case, there is one line containing two integers a and b. (2<=a<=b<=10^18)

    End of input is indicated by a line containing two zeros.
     
    Output
    For each test case, output the sum of the power of the integers from a to b.
     
    Sample Input
    2 10 248832 248832 0 0
     
    Sample Output
    13 5
     
    Source

    思路:卡精度;

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<string>
    #include<queue>
    #include<algorithm>
    #include<stack>
    #include<cstring>
    #include<vector>
    #include<list>
    #include<bitset>
    #include<set>
    #include<map>
    #include<time.h>
    using namespace std;
    #define LL long long
    #define pi (4*atan(1.0))
    #define eps 1e-8
    #define bug(x)  cout<<"bug"<<x<<endl;
    const int N=1e4+10,M=1e6+10,inf=1e9+10;
    const LL INF=1e18+10,mod=1e9+7;
    
    LL big[10]={0,0,1000000000,1000000,40000};
    const LL T=(LL)1<<31;
    
    LL multi(LL a,LL b)
    {
        LL ans=1;
        while(b)
        {
            if(b&1)
            {
                double judge=1.0*INF/ans;
                if(a>judge) return -1;
                ans*=a;
            }
            b>>=1;
            if(a>T&&b>0) return -1;
            a=a*a;
        }
        return ans;
    }
    
    LL findd(LL x,LL k)
    {
        LL r=(LL)pow(x,1.0/k);
        LL t,p;
        p=multi(r,k);
        if(p==x) return r;
        if(p>x||p==-1) r--;
        else
        {
            t=multi(r+1,k);
            if(t!=-1&&t<=x) r++;
        }
        return r;
    }
    LL dp[110];
    LL xjhz(LL x)
    {
        memset(dp,0,sizeof(dp));
        dp[1]=x-1;
        for(int i=2;i<=4;i++)
        {
            int s=2,e=big[i],ans=-1;
            while(s<=e)
            {
                int mid=(s+e)>>1;
                if(multi(mid,i)<=x)
                {
                    ans=mid;
                    s=mid+1;
                }
                else e=mid-1;
            }
            if(ans!=-1)dp[i]=ans-1;
        }
        for(int i=5;i<=60;i++)
        {
            dp[i]=findd(x,i)-1;
        }
        for(int i=60;i>=1;i--)
        {
            for(int j=i+i;j<=60;j+=i)
                dp[i]-=dp[j];
        }
        LL out=0;
        for(int i=1;i<=60;i++)
            out+=1LL*i*dp[i];
        return out;
    }
    int main()
    {
        LL l,r;
        while(~scanf("%lld%lld",&l,&r))
        {
            if(l==0&&r==0)break;
            printf("%lld
    ",xjhz(r)-xjhz(l-1));
        }
        return 0;
    }

    Integer’s Power

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2291    Accepted Submission(s): 516


    Problem Description
    LMY and YY are number theory lovers. They like to find and solve some interesting number theory problems together. One day, they become interested in some special numbers, which can be expressed as powers of smaller numbers.

    For example, 9=3^2, 64=2^6, 1000=10^3 …

    For a given positive integer y, if we can find a largest integer k and a smallest positive integer x, such that x^k=y, then the power of y is regarded as k.
    It is very easy to find the power of an integer. For example:

    The power of 9 is 2.
    The power of 64 is 6.
    The power of 1000 is 3.
    The power of 99 is 1.
    The power of 1 does not exist.

    But YY wants to calculate the sum of the power of the integers from a to b. It seems not easy. Can you help him?
     
    Input
    The input consists of multiple test cases.
    For each test case, there is one line containing two integers a and b. (2<=a<=b<=10^18)

    End of input is indicated by a line containing two zeros.
     
    Output
    For each test case, output the sum of the power of the integers from a to b.
     
    Sample Input
    2 10 248832 248832 0 0
     
    Sample Output
    13 5
     
    Source
  • 相关阅读:
    oracle数据表批量插入查询到的数据
    Eclipse EXCEPTION_ACCESS_VIOLATION 崩溃解决办法
    js获取当前URL、主机端口、网络协议、请求参数
    java.util.ConcurrentModificationException异常分析
    Java跨平台调接口同时更新同一条数据发生阻塞
    centos7+mariadb+防火墙,允许远程
    centos7安装JDK
    centos7安装python3
    VMware 中安装KVM,模块不加载
    C++程序结构.1
  • 原文地址:https://www.cnblogs.com/jhz033/p/7491780.html
Copyright © 2011-2022 走看看