zoukankan      html  css  js  c++  java
  • hdu 6199 gems gems gems dp

    gems gems gems

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)



    Problem Description
    Now there are n gems, each of which has its own value. Alice and Bob play a game with these n gems.
    They place the gems in a row and decide to take turns to take gems from left to right. 
    Alice goes first and takes 1 or 2 gems from the left. After that, on each turn a player can take k or k+1 gems if the other player takes k gems in the previous turn. The game ends when there are no gems left or the current player can't take k or k+1 gems.
    Your task is to determine the difference between the total value of gems Alice took and Bob took. Assume both players play optimally. Alice wants to maximize the difference while Bob wants to minimize it.
     
    Input
    The first line contains an integer T (1T10), the number of the test cases. 
    For each test case:
    the first line contains a numbers n (1n20000);
    the second line contains n numbers: V1,V2Vn. (100000Vi100000)
     
    Output
    For each test case, print a single number in a line: the difference between the total value of gems Alice took and the total value of gems Bob took.
     
    Sample Input
    1 3 1 3 2
     
    Sample Output
    4
     
    Source

    思路:dp,蜜汁题意;滚动数组优化空间;

    #include<bits/stdc++.h>
    using namespace std;
    
    const int N=2e4+10,M=2e6+10,inf=1e9+10;
    
    int dp[2][1010][201],n,sum[N];
    
    int main()
    {
        int T,x;
        scanf("%d",&T);
        while(T--)
        {
            memset(dp,0,sizeof(dp));
            scanf("%d",&n);
            for(int i=1;i<=n;i++)
                scanf("%d",&x),sum[i]=sum[i-1]+x;
            for(int i=n;i>=1;i--)
            {
                for(int j=200;j>=1;j--)
                {
                    if(i+j<=n)
                    {
                        dp[0][i%1000][j]=max(sum[i+j-1]-sum[i-1]+dp[1][(i+j)%1000][j],sum[i+j]-sum[i-1]+dp[1][(i+j+1)%1000][j+1]);
                        dp[1][i%1000][j]=min(-sum[i+j-1]+sum[i-1]+dp[0][(i+j)%1000][j],-sum[i+j]+sum[i-1]+dp[0][(i+j+1)%1000][j+1]);
                    }
                    else if(i+j-1<=n)
                    {
                        dp[0][i%1000][j]=dp[1][(i+j)%1000][j]+sum[i+j-1]-sum[i-1];
                        dp[1][i%1000][j]=dp[0][(i+j)%1000][j]-sum[i+j-1]+sum[i-1];
                    }
                }
            }
            printf("%d
    ",dp[0][1][1]);
        }
        return 0;
    }

    gems gems gems

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 625    Accepted Submission(s): 77


    Problem Description
    Now there are n gems, each of which has its own value. Alice and Bob play a game with these n gems.
    They place the gems in a row and decide to take turns to take gems from left to right. 
    Alice goes first and takes 1 or 2 gems from the left. After that, on each turn a player can take k or k+1 gems if the other player takes k gems in the previous turn. The game ends when there are no gems left or the current player can't take k or k+1 gems.
    Your task is to determine the difference between the total value of gems Alice took and Bob took. Assume both players play optimally. Alice wants to maximize the difference while Bob wants to minimize it.
     
    Input
    The first line contains an integer T (1T10), the number of the test cases. 
    For each test case:
    the first line contains a numbers n (1n20000);
    the second line contains n numbers: V1,V2Vn. (100000Vi100000)
     
    Output
    For each test case, print a single number in a line: the difference between the total value of gems Alice took and the total value of gems Bob took.
     
    Sample Input
    1 3 1 3 2
     
    Sample Output
    4
     
    Source
  • 相关阅读:
    信号量的简单使用
    [Unity 3D] Unity 3D 性能优化(二)
    Android 开机动画源码分析
    关于FTP操作的功能类
    ArcGIS Engine 改变线IPolyline的方向
    使用ORACLE SQL Tuning advisor快速优化低效的SQL语句
    Linux CPU 负载度量公式
    Java垃圾回收机制
    常用的shell命令整理
    UVa340
  • 原文地址:https://www.cnblogs.com/jhz033/p/7505091.html
Copyright © 2011-2022 走看看