zoukankan      html  css  js  c++  java
  • hdu 6199 gems gems gems dp

    gems gems gems

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)



    Problem Description
    Now there are n gems, each of which has its own value. Alice and Bob play a game with these n gems.
    They place the gems in a row and decide to take turns to take gems from left to right. 
    Alice goes first and takes 1 or 2 gems from the left. After that, on each turn a player can take k or k+1 gems if the other player takes k gems in the previous turn. The game ends when there are no gems left or the current player can't take k or k+1 gems.
    Your task is to determine the difference between the total value of gems Alice took and Bob took. Assume both players play optimally. Alice wants to maximize the difference while Bob wants to minimize it.
     
    Input
    The first line contains an integer T (1T10), the number of the test cases. 
    For each test case:
    the first line contains a numbers n (1n20000);
    the second line contains n numbers: V1,V2Vn. (100000Vi100000)
     
    Output
    For each test case, print a single number in a line: the difference between the total value of gems Alice took and the total value of gems Bob took.
     
    Sample Input
    1 3 1 3 2
     
    Sample Output
    4
     
    Source

    思路:dp,蜜汁题意;滚动数组优化空间;

    #include<bits/stdc++.h>
    using namespace std;
    
    const int N=2e4+10,M=2e6+10,inf=1e9+10;
    
    int dp[2][1010][201],n,sum[N];
    
    int main()
    {
        int T,x;
        scanf("%d",&T);
        while(T--)
        {
            memset(dp,0,sizeof(dp));
            scanf("%d",&n);
            for(int i=1;i<=n;i++)
                scanf("%d",&x),sum[i]=sum[i-1]+x;
            for(int i=n;i>=1;i--)
            {
                for(int j=200;j>=1;j--)
                {
                    if(i+j<=n)
                    {
                        dp[0][i%1000][j]=max(sum[i+j-1]-sum[i-1]+dp[1][(i+j)%1000][j],sum[i+j]-sum[i-1]+dp[1][(i+j+1)%1000][j+1]);
                        dp[1][i%1000][j]=min(-sum[i+j-1]+sum[i-1]+dp[0][(i+j)%1000][j],-sum[i+j]+sum[i-1]+dp[0][(i+j+1)%1000][j+1]);
                    }
                    else if(i+j-1<=n)
                    {
                        dp[0][i%1000][j]=dp[1][(i+j)%1000][j]+sum[i+j-1]-sum[i-1];
                        dp[1][i%1000][j]=dp[0][(i+j)%1000][j]-sum[i+j-1]+sum[i-1];
                    }
                }
            }
            printf("%d
    ",dp[0][1][1]);
        }
        return 0;
    }

    gems gems gems

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 625    Accepted Submission(s): 77


    Problem Description
    Now there are n gems, each of which has its own value. Alice and Bob play a game with these n gems.
    They place the gems in a row and decide to take turns to take gems from left to right. 
    Alice goes first and takes 1 or 2 gems from the left. After that, on each turn a player can take k or k+1 gems if the other player takes k gems in the previous turn. The game ends when there are no gems left or the current player can't take k or k+1 gems.
    Your task is to determine the difference between the total value of gems Alice took and Bob took. Assume both players play optimally. Alice wants to maximize the difference while Bob wants to minimize it.
     
    Input
    The first line contains an integer T (1T10), the number of the test cases. 
    For each test case:
    the first line contains a numbers n (1n20000);
    the second line contains n numbers: V1,V2Vn. (100000Vi100000)
     
    Output
    For each test case, print a single number in a line: the difference between the total value of gems Alice took and the total value of gems Bob took.
     
    Sample Input
    1 3 1 3 2
     
    Sample Output
    4
     
    Source
  • 相关阅读:
    PHP 命名空间
    使用 htaccess 重写 url,隐藏查询字符串
    HTML 长文本换行
    Mac OS X 上的Apache配置
    无法debug断点跟踪JDK源代码——missing line number attributes的解决方法
    根据多条件删除还能这样写
    wm_concat()函数
    spring 事务-使用@Transactional 注解(事务隔离级别)
    spring 中常用的两种事务配置方式以及事务的传播性、隔离级别
    oracle 中SQL 语句开发语法 SELECT INTO含义
  • 原文地址:https://www.cnblogs.com/jhz033/p/7505091.html
Copyright © 2011-2022 走看看