zoukankan      html  css  js  c++  java
  • hdu 4856 Tunnels 状态压缩dp

    Tunnels

    Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)



    Problem Description
    Bob is travelling in Xi’an. He finds many secret tunnels beneath the city. In his eyes, the city is a grid. He can’t enter a grid with a barrier. In one minute, he can move into an adjacent grid with no barrier. Bob is full of curiosity and he wants to visit all of the secret tunnels beneath the city. To travel in a tunnel, he has to walk to the entrance of the tunnel and go out from the exit after a fabulous visit. He can choose where he starts and he will travel each of the tunnels once and only once. Now he wants to know, how long it will take him to visit all the tunnels (excluding the time when he is in the tunnels).
     
    Input
    The input contains mutiple testcases. Please process till EOF.
    For each testcase, the first line contains two integers N (1 ≤ N ≤ 15), the side length of the square map and M (1 ≤ M ≤ 15), the number of tunnels.
    The map of the city is given in the next N lines. Each line contains exactly N characters. Barrier is represented by “#” and empty grid is represented by “.”.
    Then M lines follow. Each line consists of four integers x1, y1, x2, y2, indicating there is a tunnel with entrence in (x1, y1) and exit in (x2, y2). It’s guaranteed that (x1, y1) and (x2, y2) in the map are both empty grid.
     
    Output
    For each case, output a integer indicating the minimal time Bob will use in total to walk between tunnels.
    If it is impossible for Bob to visit all the tunnels, output -1.
     
    Sample Input
    5 4 ....# ...#. ..... ..... ..... 2 3 1 4 1 2 3 5 2 3 3 1 5 4 2 1
     
    Sample Output
    7
     
    Source

    题意:一个图,#不可达,m条单向通道,点间花费1时间,通道起点到终点不花费时间,求最少花费时间;

    思路:状态压缩dp,dp[i][j] i表示已经走过哪些通道,j表示最后的走的那条通道是哪条。

       dp[i][j]=dp[i-(1<<(j-1)][k] +dis(k,j)  dis(k,j)表示第k条通道的终点到第j条通道的起点距离;

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<string>
    #include<queue>
    #include<algorithm>
    #include<stack>
    #include<cstring>
    #include<vector>
    #include<list>
    #include<set>
    #include<map>
    #include<bitset>
    #include<time.h>
    using namespace std;
    #define LL long long
    #define pi (4*atan(1.0))
    #define eps 1e-8
    #define bug(x)  cout<<"bug"<<x<<endl;
    const int N=10+10,M=1e6+10,inf=1e9+7,MOD=1e9+7;
    const LL INF=1e18+10,mod=1e9+7;
    
    int n,m,vis[N][N];
    char a[N][N];
    struct is
    {
        int s,t,e,d;
    } q[N];
    int check(int x,int y)
    {
        if(x<=0||x>n||y<=0||y>n)return 0;
        return 1;
    }
    int dis[N][N][N][N];
    int xx[5]= {1,0,-1,0};
    int yy[5]= {0,1,0,-1};
    void bfs(int s,int t)
    {
        queue<pair<int,int> >q;
        q.push(make_pair(s,t));
        memset(vis,0,sizeof(vis));
        vis[s][t]=1;dis[s][t][s][t]=0;
        while(!q.empty())
        {
            pair<int,int> p=q.front();
            q.pop();
            for(int i=0; i<4; i++)
            {
                int x=p.first+xx[i];
                int y=p.second+yy[i];
                if(check(x,y)&&!vis[x][y]&&a[x][y]=='.')
                {
                    vis[x][y]=1;
                    dis[s][t][x][y]=dis[s][t][p.first][p.second]+1;
                    q.push(make_pair(x,y));
                }
            }
        }
    }
    int dp[50000][N];
    int main()
    {
        while(~scanf("%d%d",&n,&m))
        {
            memset(dis,-1,sizeof(dis));
            for(int i=1; i<=n; i++)
                scanf("%s",a[i]+1);
            for(int i=1; i<=m; i++)
                scanf("%d%d%d%d",&q[i].s,&q[i].t,&q[i].e,&q[i].d);
            for(int i=1;i<=n;i++)for(int j=1;j<=n;j++)bfs(i,j);
            memset(dp,-1,sizeof(dp));
            for(int i=1;i<=(1<<m)-1;i++)
            {
                for(int j=1;j<=m;j++)
                {
                    if((1<<(j-1))&i)
                    {
                        int now=i-(1<<(j-1));
                        if(!now)
                        {
                            dp[i][j]=0;
                            continue;
                        }
                        for(int k=1;k<=m;k++)
                        {
                            if(now&(1<<(k-1)))
                            {
                                if(dp[now][k]!=-1&&dis[q[k].e][q[k].d][q[j].s][q[j].t]!=-1)
                                {
                                    int temp=dp[i][j];
                                    dp[i][j]=dp[now][k]+dis[q[k].e][q[k].d][q[j].s][q[j].t];
                                    if(temp!=-1)dp[i][j]=min(dp[i][j],temp);
                                }
                            }
                        }
                    }
                }
            }
            int ans=inf;
            for(int i=1;i<=m;i++)
            if(dp[(1<<m)-1][i]!=-1)ans=min(ans,dp[(1<<m)-1][i]);
            if(ans!=inf)printf("%d
    ",ans);
            else printf("-1
    ");
        }
        return 0;
    }
  • 相关阅读:
    WCF 第四章 绑定 在多个绑定上暴露一个服务契约
    WCF 第五章 行为 事务跨操作事务流
    WCF 第五章 导出并发布元数据(服务行为)
    WCF 第五章 行为 通过配置文件暴露一个服务行为
    WCF 第五章 不支持会话的绑定的默认并发和实例
    WCF 第五章 并发和实例(服务行为)
    WCF 第五章 行为 总结
    WCF 第四章 绑定 绑定元素
    WCF 第五章 行为 事务之选择一个事务协议OleTx 或者WSAT
    WCF 第四章 绑定 比较各种绑定的性能和可扩展性
  • 原文地址:https://www.cnblogs.com/jhz033/p/7652754.html
Copyright © 2011-2022 走看看