zoukankan      html  css  js  c++  java
  • hdu 6006 Engineer Assignment 状压dp

    Engineer Assignment

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)



    Problem Description
    In Google, there are many experts of different areas. For example, MapReduce experts, Bigtable experts, SQL experts, etc. Directors need to properly assign experts to various projects in order to make the projects going smoothly.
    There are N projects owned by a director. For the ith project, it needs Ci different areas of experts, ai,0,ai,1,,ai,Ci1 respective. There are M engineers reporting to the director. For the ith engineer, he is an expert of Di different areas, bi,0,bi,1,...,bi,Di1.
    Each engineer can only be assigned to one project and the director can assign several engineers to a project. A project can only be finished successfully if the engineers expert areas covers the project areas, which means, for each necessary area of the project, there is at least one engineer
    masters it.
    The director wants to know how many projects can be successfully finished.
     
    Input
    The first line of the input gives the number of test cases, T. T test cases follow. Each test case starts with a line consisting of 2 integers, N the number of projects and M the number of engineers. Then N lines follow. The ith line containing the information of the ith project starts
    with an integer Ci then Ci integers follow, ai,0,ai,1,...,ai,Ci1 representing the expert areas needed for the ith project. Then another M lines follow. The ith line containing the information of the ith engineer starts with an integer Di then Di integers follow, bi,0,bi,1,...,bi,Di1 representing the expert areas mastered by ithengineer.
     
    Output
    For each test case, output one line containing “Case #x: y”, where x is the test case number (starting from 1) and y is the maximum number of projects can be successfully finished.

    limits


    1T100.
    1N,M10.
    1Ci3.
    1Di2.
    1ai,j,bi,j100.
     
    Sample Input
    1 3 4 3 40 77 64 3 10 40 20 3 40 20 77 2 40 77 2 77 64 2 40 10 2 20 77
     
    Sample Output
    Case #1: 2
    Hint
    For the first test case, there are 3 projects and 4 engineers. One of the optimal solution is to assign the first(40 77) and second engineer(77 64) to project 1, which could cover the necessary areas 40, 77, 64. Assign the third(40 10) and forth(20 77) engineer to project 2, which could cover the necessary areas 10, 40, 20. There are other solutions, but none of them can finish all 3 projects. So the answer is 2.
     
    Source

    题意:给你一些N个地点,每个地点有多个种类问题,M个工程师,一个工程可以解决一些问题;求最多解决几个;

    思路:状态压缩dp;

       dp[i][j]表示解决前i个,用状态压缩的使用了j的工程师,最多解决问题数;

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<string>
    #include<queue>
    #include<algorithm>
    #include<stack>
    #include<cstring>
    #include<vector>
    #include<list>
    #include<set>
    #include<map>
    #include<bitset>
    #include<time.h>
    using namespace std;
    #define LL long long
    #define pi (4*atan(1.0))
    #define eps 1e-8
    #define bug(x)  cout<<"bug"<<x<<endl;
    const int N=10+10,M=1e6+10,inf=1e9+7,MOD=1e9+7;
    const LL INF=1e18+10,mod=1e9+7;
    
    struct Hash
    {
        int flag[110],tot;
        void init()
        {
            memset(flag,0,sizeof(flag));
            tot=0;
        }
        int operator [](int x)
        {
            if(flag[x])return flag[x];
            flag[x]=++tot;
            return flag[x];
        }
    }f;
    LL a[N],b[N];
    int dp[N][3000];
    int check(int pos,int x,int y,int m)
    {
        LL ans=0;
        for(int i=1;i<=m;i++)
        {
            LL xx=(1LL<<(i-1))&x;
            LL zz=(1LL<<(i-1))&y;
            if(xx^zz)
            {
                ans|=b[i];
            }
        }
        if((ans|a[pos])==ans)return 1;
        return 0;
    }
    int main()
    {
        int T,cas=1;
        scanf("%d",&T);
        while(T--)
        {
            f.init();
            memset(a,0,sizeof(a));
            memset(b,0,sizeof(b));
            int n,m;
            scanf("%d%d",&n,&m);
            for(int i=1;i<=n;i++)
            {
                int t;
                scanf("%d",&t);
                while(t--)
                {
                    int x;
                    scanf("%d",&x);
                    a[i]|=(1LL<<(f[x]-1));
                }
            }
            for(int i=1;i<=m;i++)
            {
                int t;
                scanf("%d",&t);
                while(t--)
                {
                    int x;
                    scanf("%d",&x);
                    b[i]|=(1LL<<(f[x]-1));
                }
            }
            memset(dp,0,sizeof(dp));
            for(int i=1;i<=n;i++)
            {
                for(int j=1;j<=(1<<m)-1;j++)
                {
                    for(int k=0;k<=j;k++)
                    {
                        if((k|j)!=j)continue;
                        dp[i][j]=max(dp[i][j],dp[i-1][k]+check(i,j,k,m));
                    }
                }
            }
            printf("Case #%d: %d
    ",cas++,dp[n][(1<<m)-1]);
        }
        return 0;
    }
  • 相关阅读:
    经济地理国情监测
    《城市轨道交通——产业关联理论与应用》读书笔记
    《区域经济学原理》读书笔记(上)
    《国家经济地理》杂志之第一期:探寻中国经济的“第四极”
    《地理空间分析——原理、技术与软件工具》读书笔记
    《国家经济地理》杂志第二期:再望万里海疆——走向海洋经济的中国“大航海时代”
    国家统计遥感项目、商业图盟与品牌地图的碎碎念
    关于城市规划中的投融资规划
    区域功能定位对北京人口总量及分布的影响
    《中国经济地理——经济体成因与地缘架构》读书笔记
  • 原文地址:https://www.cnblogs.com/jhz033/p/7653158.html
Copyright © 2011-2022 走看看