zoukankan      html  css  js  c++  java
  • Spark中常用工具类Utils的简明介绍

    《深入理解Spark:核心思想与源码分析》一书前言的内容请看链接《深入理解SPARK:核心思想与源码分析》一书正式出版上市

    《深入理解Spark:核心思想与源码分析》一书第一章的内容请看链接《第1章 环境准备》

    《深入理解Spark:核心思想与源码分析》一书第二章的内容请看链接《第2章 SPARK设计理念与基本架构》

    《深入理解Spark:核心思想与源码分析》一书第三章第一部分的内容请看链接《深入理解Spark:核心思想与源码分析》——SparkContext的初始化(伯篇)》

    《深入理解Spark:核心思想与源码分析》一书第三章第二部分的内容请看链接《深入理解Spark:核心思想与源码分析》——SparkContext的初始化(仲篇)》

    《深入理解Spark:核心思想与源码分析》一书第三章第三部分的内容请看链接《深入理解Spark:核心思想与源码分析》——SparkContext的初始化(叔篇)》

    《深入理解Spark:核心思想与源码分析》一书第三章第四部分的内容请看链接《深入理解Spark:核心思想与源码分析》——SparkContext的初始化(季篇)》

    Utils是Spark中最常用的工具类之一,如果不关心其实现,也不会对理解Spark有太多影响。但是对于Scala或者Spark的初学者来说,通过了解Utils工具类的实现,也是个不错的入门途径。下面将逐个介绍Utils工具类提供的常用方法。

    1.localHostName

    功能描述:获取本地机器名。

    def localHostName(): String = { 
    customHostname.getOrElse(localIpAddressHostname) 
    } 

    2.getDefaultPropertiesFile

    功能描述:获取默认的Spark属性文件。

    def getDefaultPropertiesFile(env: Map[String, String] = sys.env): String = { 
      env.get("SPARK_CONF_DIR") 
      .orElse(env.get("SPARK_HOME").map{ t => s"$t${File.separator}conf"}) 
      .map { t => new File(s"$t${File.separator}spark-defaults.conf")} 
      .filter(_.isFile) 
      .map(_.getAbsolutePath) 
      .orNull 
    } 

    3.loadDefaultSparkProperties

    功能描述:加载指定文件中的Spark属性,如果没有指定文件,则加载默认Spark属性文件的属性。

    def loadDefaultSparkProperties(conf:SparkConf, filePath: String = null):String = { 
      val path =Option(filePath).getOrElse(getDefaultPropertiesFile()) 
      Option(path).foreach { confFile => 
        getPropertiesFromFile(confFile).filter{ case (k,v) => 
        k.startsWith("spark.") 
        }.foreach { case (k, v) => 
          conf.setIfMissing(k, v) 
          sys.props.getOrElseUpdate(k, v) 
        } 
      } 
      path 
    } 

    4.getCallSite

    功能描述:获取当前SparkContext的当前调用堆栈,将栈里最靠近栈底的属于spark或者Scala核心的类压入callStack的栈顶,并将此类的方法存入lastSparkMethod;将栈里最靠近栈顶的用户类放入callStack,将此类的行号存入firstUserLine,类名存入firstUserFile,最终返回的样例类CallSite存储了最短栈和长度默认为20的最长栈的样例类。在JavaWordCount例子中,获得的数据如下:
    最短栈:JavaSparkContext at JavaWordCount.java:44;
    最长栈:org.apache.spark.api.java.JavaSparkContext.<init>(JavaSparkContext.scala:61)org.apache.spark.examples.JavaWordCount.main(JavaWordCount.java:44)。

    def getCallSite(skipClass: String => Boolean = coreExclusionFunction): CallSite = {
        val trace = Thread.currentThread.getStackTrace().filterNot { ste: StackTraceElement =>
          ste == null || ste.getMethodName == null || ste.getMethodName.contains("getStackTrace")
        }
        var lastSparkMethod = "<unknown>"
        var firstUserFile = "<unknown>"
        var firstUserLine = 0
        var insideSpark = true
        var callStack = new ArrayBuffer[String]() :+ "<unknown>"
    
        for (el <- trace) {
          if (insideSpark) {
            if (skipClass(el.getClassName)) {
              lastSparkMethod = if (el.getMethodName == "<init>") {
                el.getClassName.substring(el.getClassName.lastIndexOf('.') + 1)
              } else {
                el.getMethodName
              }
              callStack(0) = el.toString // Put last Spark method on top of the stack trace.
            } else {
              firstUserLine = el.getLineNumber
              firstUserFile = el.getFileName
              callStack += el.toString
              insideSpark = false
            }
          } else {
            callStack += el.toString
          }
        }
        val callStackDepth = System.getProperty("spark.callstack.depth", "20").toInt
        CallSite(
          shortForm = s"$lastSparkMethod at $firstUserFile:$firstUserLine",
          longForm = callStack.take(callStackDepth).mkString("
    "))
      }

    5.startServiceOnPort

    功能描述:Scala跟其它脚本语言一样,函数也可以传递,此方法正是通过回调startService这个函数来启动服务,并最终返回startService返回的service地址及端口。如果启动过程有异常,还会多次重试,直到达到maxRetries表示的最大次数。

    def startServiceOnPort[T](
          startPort: Int,
          startService: Int => (T, Int),
          conf: SparkConf,
          serviceName: String = ""): (T, Int) = {
        require(startPort == 0 || (1024 <= startPort && startPort < 65536),
          "startPort should be between 1024 and 65535 (inclusive), or 0 for a random free port.")
        val serviceString = if (serviceName.isEmpty) "" else s" '$serviceName'"
        val maxRetries = portMaxRetries(conf)
        for (offset <- 0 to maxRetries) {
          val tryPort = if (startPort == 0) {
            startPort
          } else {
            ((startPort + offset - 1024) % (65536 - 1024)) + 1024
          }
          try {
            val (service, port) = startService(tryPort)
            logInfo(s"Successfully started service$serviceString on port $port.")
            return (service, port)
          } catch {
            case e: Exception if isBindCollision(e) =>
              if (offset >= maxRetries) {
                val exceptionMessage =
                  s"${e.getMessage}: Service$serviceString failed after $maxRetries retries!"
                val exception = new BindException(exceptionMessage)
                exception.setStackTrace(e.getStackTrace)
                throw exception
              }
              logWarning(s"Service$serviceString could not bind on port $tryPort. " +
                s"Attempting port ${tryPort + 1}.")
          }
        }
        throw new SparkException(s"Failed to start service$serviceString on port $startPort")
      }

    6.createDirectory

    功能描述:用spark+UUID的方式创建临时文件目录,如果创建失败会多次重试,最多重试10次。

    def createDirectory(root: String, namePrefix: String = "spark"): File = {
        var attempts = 0
        val maxAttempts = MAX_DIR_CREATION_ATTEMPTS
        var dir: File = null
        while (dir == null) {
          attempts += 1
          if (attempts > maxAttempts) {
            throw new IOException("Failed to create a temp directory (under " + root + ") after " +
              maxAttempts + " attempts!")
          }
          try {
            dir = new File(root, "spark-" + UUID.randomUUID.toString)
            if (dir.exists() || !dir.mkdirs()) {
              dir = null
            }
          } catch { case e: SecurityException => dir = null; }
        }
    
        dir
      }

    7.getOrCreateLocalRootDirs

    功能描述:根据spark.local.dir的配置,作为本地文件的根目录,在创建一、二级目录之前要确保根目录是存在的。然后调用createDirectory创建一级目录。

    private[spark] def getOrCreateLocalRootDirs(conf: SparkConf): Array[String] = {
        if (isRunningInYarnContainer(conf)) {
          getYarnLocalDirs(conf).split(",")
        } else {
          Option(conf.getenv("SPARK_LOCAL_DIRS"))
            .getOrElse(conf.get("spark.local.dir", System.getProperty("java.io.tmpdir")))
            .split(",")
            .flatMap { root =>
              try {
                val rootDir = new File(root)
                if (rootDir.exists || rootDir.mkdirs()) {
                  val dir = createDirectory(root)
                  chmod700(dir)
                  Some(dir.getAbsolutePath)
                } else {
                  logError(s"Failed to create dir in $root. Ignoring this directory.")
                  None
                }
              } catch {
                case e: IOException =>
                logError(s"Failed to create local root dir in $root. Ignoring this directory.")
                None
              }
            }
            .toArray
        }
      }

    8.getLocalDir

    功能描述:查询Spark本地文件的一级目录。

    def getLocalDir(conf: SparkConf): String = {
        getOrCreateLocalRootDirs(conf)(0)
      }

    9.createTempDir

    功能描述:在Spark一级目录下创建临时目录,并将目录注册到shutdownDeletePaths:scala.collection.mutable.HashSet[String]中。

    def createTempDir(
          root: String = System.getProperty("java.io.tmpdir"),
          namePrefix: String = "spark"): File = {
        val dir = createDirectory(root, namePrefix)
        registerShutdownDeleteDir(dir)
        dir
      }

    10.RegisterShutdownDeleteDir

    功能描述:将目录注册到shutdownDeletePaths:scala.collection.mutable.HashSet[String]中,以便在进程退出时删除。

      def registerShutdownDeleteDir(file: File) {
        val absolutePath = file.getAbsolutePath()
        shutdownDeletePaths.synchronized {
          shutdownDeletePaths += absolutePath
        }
      }

    11.hasRootAsShutdownDeleteDir

    功能描述:判断文件是否匹配关闭时要删除的文件及目录,shutdownDeletePaths:scala.collection.mutable.HashSet[String]存储在进程关闭时要删除的文件及目录。

    def hasRootAsShutdownDeleteDir(file: File): Boolean = {
        val absolutePath = file.getAbsolutePath()
        val retval = shutdownDeletePaths.synchronized {
          shutdownDeletePaths.exists { path =>
            !absolutePath.equals(path) && absolutePath.startsWith(path)
          }
        }
        if (retval) {
          logInfo("path = " + file + ", already present as root for deletion.")
        }
        retval
      }

    12.deleteRecursively

    功能描述:用于删除文件或者删除目录及其子目录、子文件,并且从shutdownDeletePaths:scala.collection.mutable.HashSet[String]中移除此文件或目录。

    def deleteRecursively(file: File) {
        if (file != null) {
          try {
            if (file.isDirectory && !isSymlink(file)) {
              var savedIOException: IOException = null
              for (child <- listFilesSafely(file)) {
                try {
                  deleteRecursively(child)
                } catch {
                  case ioe: IOException => savedIOException = ioe
                }
              }
              if (savedIOException != null) {
                throw savedIOException
              }
              shutdownDeletePaths.synchronized {
                shutdownDeletePaths.remove(file.getAbsolutePath)
              }
            }
          } finally {
            if (!file.delete()) {
              if (file.exists()) {
                throw new IOException("Failed to delete: " + file.getAbsolutePath)
              }
            }
          }
        }
      }

    13.getSparkClassLoader

    功能描述:获取加载当前class的ClassLoader。

      def getSparkClassLoader = getClass.getClassLoader

    14.getContextOrSparkClassLoader

    功能描述:用于获取线程上下文的ClassLoader,没有设置时获取加载Spark的ClassLoader。

    def getContextOrSparkClassLoader =
        Option(Thread.currentThread().getContextClassLoader).getOrElse(getSparkClassLoader)

    15.newDaemonCachedThreadPool

    功能描述:使用Executors.newCachedThreadPool创建的缓存线程池。

      def newDaemonCachedThreadPool(prefix: String): ThreadPoolExecutor = {
        val threadFactory = namedThreadFactory(prefix)
        Executors.newCachedThreadPool(threadFactory).asInstanceOf[ThreadPoolExecutor]
      }

    16.doFetchFile

    功能描述:使用URLConnection通过http协议下载文件。

    private def doFetchFile(url: String, targetDir: File, filename: String, conf: SparkConf,
          securityMgr: SecurityManager, hadoopConf: Configuration) {
        val tempFile = File.createTempFile("fetchFileTemp", null, new File(targetDir.getAbsolutePath))
        val targetFile = new File(targetDir, filename)
        val uri = new URI(url)
        val fileOverwrite = conf.getBoolean("spark.files.overwrite", defaultValue = false)
        Option(uri.getScheme).getOrElse("file") match {
          case "http" | "https" | "ftp" =>
            logInfo("Fetching " + url + " to " + tempFile)
            var uc: URLConnection = null
            if (securityMgr.isAuthenticationEnabled()) {
              logDebug("fetchFile with security enabled")
              val newuri = constructURIForAuthentication(uri, securityMgr)
              uc = newuri.toURL().openConnection()
              uc.setAllowUserInteraction(false)
            } else {
              logDebug("fetchFile not using security")
              uc = new URL(url).openConnection()
            }
            val timeout = conf.getInt("spark.files.fetchTimeout", 60) * 1000
            uc.setConnectTimeout(timeout)
            uc.setReadTimeout(timeout)
            uc.connect()
            val in = uc.getInputStream()
            downloadFile(url, in, tempFile, targetFile, fileOverwrite)
          case "file" =>
            val sourceFile = if (uri.isAbsolute) new File(uri) else new File(url)
            copyFile(url, sourceFile, targetFile, fileOverwrite)
          case _ =>
            val fs = getHadoopFileSystem(uri, hadoopConf)
            val in = fs.open(new Path(uri))
            downloadFile(url, in, tempFile, targetFile, fileOverwrite)
        }
      }

    17.fetchFile

    功能描述:如果文件在本地有缓存,则从本地获取,否则通过HTTP远程下载。最后对.tar、.tar.gz等格式的文件解压缩后,调用shell命令行的chmod命令给文件增加a+x的权限。

    def fetchFile(
          url: String,
          targetDir: File,
          conf: SparkConf,
          securityMgr: SecurityManager,
          hadoopConf: Configuration,
          timestamp: Long,
          useCache: Boolean) {
        val fileName = url.split("/").last
        val targetFile = new File(targetDir, fileName)
        val fetchCacheEnabled = conf.getBoolean("spark.files.useFetchCache", defaultValue = true)
        if (useCache && fetchCacheEnabled) {
          val cachedFileName = s"${url.hashCode}${timestamp}_cache"
          val lockFileName = s"${url.hashCode}${timestamp}_lock"
          val localDir = new File(getLocalDir(conf))
          val lockFile = new File(localDir, lockFileName)
          val raf = new RandomAccessFile(lockFile, "rw")
          val lock = raf.getChannel().lock()
          val cachedFile = new File(localDir, cachedFileName)
          try {
            if (!cachedFile.exists()) {
              doFetchFile(url, localDir, cachedFileName, conf, securityMgr, hadoopConf)
            }
          } finally {
            lock.release()
          }
          copyFile(
            url,
            cachedFile,
            targetFile,
            conf.getBoolean("spark.files.overwrite", false)
          )
        } else {
          doFetchFile(url, targetDir, fileName, conf, securityMgr, hadoopConf)
        }
        if (fileName.endsWith(".tar.gz") || fileName.endsWith(".tgz")) {
          logInfo("Untarring " + fileName)
          Utils.execute(Seq("tar", "-xzf", fileName), targetDir)
        } else if (fileName.endsWith(".tar")) {
          logInfo("Untarring " + fileName)
          Utils.execute(Seq("tar", "-xf", fileName), targetDir)
        }
        FileUtil.chmod(targetFile.getAbsolutePath, "a+x")
      }

    18.executeAndGetOutput

    功能描述:执行一条command命令,并且获取它的输出。调用stdoutThread的join方法,让当前线程等待stdoutThread执行完成。

    def executeAndGetOutput(
          command: Seq[String],
          workingDir: File = new File("."),
          extraEnvironment: Map[String, String] = Map.empty): String = {
        val builder = new ProcessBuilder(command: _*)
            .directory(workingDir)
        val environment = builder.environment()
        for ((key, value) <- extraEnvironment) {
          environment.put(key, value)
        }
        val process = builder.start()
        new Thread("read stderr for " + command(0)) {
          override def run() {
            for (line <- Source.fromInputStream(process.getErrorStream).getLines()) {
              System.err.println(line)
            }
          }
        }.start()
        val output = new StringBuffer
        val stdoutThread = new Thread("read stdout for " + command(0)) {
          override def run() {
            for (line <- Source.fromInputStream(process.getInputStream).getLines()) {
              output.append(line)
            }
          }
        }
        stdoutThread.start()
        val exitCode = process.waitFor()
        stdoutThread.join()   // Wait for it to finish reading output
        if (exitCode != 0) {
          logError(s"Process $command exited with code $exitCode: $output")
          throw new SparkException(s"Process $command exited with code $exitCode")
        }
        output.toString
      }

    19.memoryStringToMb

    功能描述:将内存大小字符串转换为以MB为单位的整型值。

      def memoryStringToMb(str: String): Int = {
        val lower = str.toLowerCase
        if (lower.endsWith("k")) {
          (lower.substring(0, lower.length-1).toLong / 1024).toInt
        } else if (lower.endsWith("m")) {
          lower.substring(0, lower.length-1).toInt
        } else if (lower.endsWith("g")) {
          lower.substring(0, lower.length-1).toInt * 1024
        } else if (lower.endsWith("t")) {
          lower.substring(0, lower.length-1).toInt * 1024 * 1024
        } else {// no suffix, so it's just a number in bytes
          (lower.toLong / 1024 / 1024).toInt
        }
      }
  • 相关阅读:
    我觉得 一个 单片机 代码 程序猿 连一个链表都不会写的 话 ,太说不过去了 ,学习 一下
    peripheralStateNotificationCB
    SimpleProfile_GetParameter && SimpleProfile_SetParameter
    performPeriodicTask
    如何在IAR工程中创建和使用模板
    英语 单词 收集
    KD-树(下)
    KD-树(上)
    KNN
    命令方式联网与界面network-manager方式联网
  • 原文地址:https://www.cnblogs.com/jiaan-geng/p/5301129.html
Copyright © 2011-2022 走看看