zoukankan      html  css  js  c++  java
  • 2017 多校4 Wavel Sequence

    2017 多校4 Wavel Sequence

    题意:

    Formally, he defines a sequence (a_1,a_2,...,a_n) as ''wavel'' if and only if (a_1<a_2>a_3<a_4>a_5<a_6)...
    Now given two sequences (a_1,a_2,...,a_n) and (b_1,b_2,...,b_m), Little Q wants to find two sequences (f_1,f_2,...,f_k(1≤f_i≤n,f_i<f_{i+1})) and (g_1,g_2,...,g_k(1≤g_i≤m,g_i<g_i+1)), where (a_{f_i}=b_{g_i}) always holds and sequence (a_{f_1},a_{f_2},...,a_{f_k}) is ''wavel''.

    (1<=n,m<=2000)
    (1<=a_i,b_i<=2000)

    题解:

    (f_{i,j,k})
    ​​ 表示仅考虑(a[1..i])(b[1..j]),选择的两个子序列结尾分别是(a_i)(b_j),且上升下降状态是(k) 时的方案数,
    (f_{i,j,k}=sum f_{x,y,1-k})
    ​​ ,其中(x<i,y<j)

    具体点说
    定义(f[i][j][0/1])为选择的两个子序列结尾分别是(a_i)(b_j),当前为下降/上升状态的方案数
    则当(a[i] = b[j])的时候有
    (f[i][j][0] = sum f[x][y][1]),其中(x < i,y < j 且a[x] < a[i])
    (f[i][j][1] = sum f[x][y][0] + 1),其中(x < i,y < j 且a[x] > a[i])
    暴力枚举是O(n^4)的,可以用二维树状数组去优化两维变成(O(n^{2}log{^2}n))
    顺序枚举i,保证了第一维递增的,只需要用树状数组去维护第二维的下标和值

    #include<bits/stdc++.h>
    #define LL long long
    #define P pair<int,int>
    using namespace std;
    const int N = 2e3 + 10;
    const int mod = 998244353;
    int read(){
        int x = 0;
        char c = getchar();
        while(c < '0' || c > '9') c = getchar();
        while(c >= '0' && c <= '9') x = x * 10 + c - 48, c = getchar();
        return x;
    }
    int s[2][N][N];
    int a[N],b[N];
    int n,m;
    void add(int &x,int y){
        x += y;
        if(x >= mod) x -= mod;
    }
    int lowbit(int x){
        return x & (-x);
    }
    int sum(int o,int i,int j){
        int ans = 0;
        while(i){
            int y = j;
            while(y){
                add(ans,s[o][i][y]);
                y -= lowbit(y);
            }
            i -= lowbit(i);
        }
        return ans;
    }
    void update(int o,int i,int j,int val){
        while(i <= n){
            int y = j;
            while(y <= 2000){
                add(s[o][i][y],val);
                y += lowbit(y);
            }
            i += lowbit(i);
        }
    }
    int main(){
    
        int T;
        T = read();
        while(T--){
          n = read(),m = read();
          for(int k = 0;k < 2;k++)
            for(int i = 1;i <= n;i++)
                for(int j = 1;j <= 2000;j++) s[k][i][j] = 0;
          for(int i = 1;i <= n;i++) a[i] = read();
          for(int i = 1;i <= m;i++) b[i] = read();
          int ans = 0;
          for(int i = 1;i <= m;i++){
            for(int j = 1;j <= n;j++){
                if(b[i] == a[j]){
                    int tmp1 = sum(1,j-1,a[j]-1),tmp2 = (mod + sum(0,j-1,2000)-sum(0,j-1,a[j]))%mod;
                    update(0,j,a[j],tmp1);/// 0 下降 1 上升
                    update(1,j,a[j],(tmp2 + 1)%mod);
                    add(ans,tmp1);
                    add(ans,tmp2);
                    add(ans,1);
                }
            }
          }
          printf("%d
    ",ans);
        }
        return 0;
    }
    
    

    题解的(O(n^2))的做法
    (s[i][j][0/1])表示(a)(b)分别在(1)$i$和$1$(j)的结尾的子序列的方案
    那么(dp[i][j][k] = s[i-1][j-1][1 - k] + k==1?1:0)
    (i,j)顺序枚举,遇到(a[i] = b[j])的时候,前面可以顺便计算大于和小于它的方案,然后更新即可

    #include<bits/stdc++.h>
    #define LL long long
    #define P pair<int,int>
    using namespace std;
    const int N = 2e3 + 10;
    const int mod = 998244353;
    int read(){
        int x = 0;
        char c = getchar();
        while(c < '0' || c > '9') c = getchar();
        while(c >= '0' && c <= '9') x = x * 10 + c - 48, c = getchar();
        return x;
    }
    int s[2][N][N];
    int dp[2][N][N];
    int a[N],b[N];
    int n,m;
    void add(int &x,int y){
         x += y;
         if(x >= mod) x -= mod;
    }
    int main(){
    
        int T;
        T = read();
        while(T--){
          n = read(),m = read();
          for(int i = 1;i <= n;i++) a[i] = read();
          for(int i = 1;i <= m;i++) b[i] = read();
          for(int k = 0;k < 2;k++)
            for(int i = 1;i <= n;i++)
                for(int j = 1;j <= m;j++) dp[k][i][j] = s[k][i][j] = 0;
          int ans = 0;
          for(int i = 1;i <= n;i++){
            int tmp0 = 0,tmp1 = 0;///0 下降 1 上升
            for(int j = 1;j <= m;j++){
                if(a[i] == b[j]){
                    add(dp[0][i][j],tmp0);
                    add(dp[1][i][j],(tmp1+1)%mod);
                    add(ans,(dp[0][i][j]+dp[1][i][j])%mod);
                }
                else if(a[i] > b[j]){
                    add(tmp0, s[1][i-1][j]);
                }else{
                    add(tmp1,s[0][i-1][j]);
                }
            }
            for(int j = 1;j <= m;j++){
                s[0][i][j] = s[0][i-1][j];
                s[1][i][j] = s[1][i-1][j];
                if(a[i] == b[j]){
                    add(s[0][i][j],dp[0][i][j]);
                    add(s[1][i][j],dp[1][i][j]);
                }
            }
          }
          printf("%d
    ",ans);
        }
        return 0;
    }
    
  • 相关阅读:
    react 踩坑第一天
    vue-cli+axios+跨域
    vuex 进阶 mapState mapGetter mapActions mapMutations
    vue Bus
    各种html布局
    echarts柱状图设置渐变色
    html设置一个当前时间
    css设置字体渐变色
    C++中指针与引用详解
    go-admin 开源后台管理系统
  • 原文地址:https://www.cnblogs.com/jiachinzhao/p/7295643.html
Copyright © 2011-2022 走看看