链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2275
思路
原来金币数为a1,a2,`````an;
最终的金币为这些数的平均值,设为M
xi表示i给i+1的金币个数
a1+xn-x1=M
a2+x1-x2=M
a3+x2-x3=M
a4+x3-x4=M
.......
an+x(n-1)-xn=M
利用后面n-1个等式,用x1表示 x2,x3,...xn
x2=x1-(M-a2)
x3=x1-(2*M-a2-a3);
....
结果就是求|x1|+|x1-b1|+|x1-b2|+...+|x1-b[n-1]|的最小值,取中位数;
View Code
1 #include <iostream> 2 #include <cstdio> 3 #include <string> 4 #include <cstring> 5 #include <cmath> 6 #include <algorithm> 7 using namespace std; 8 typedef long long LL; 9 int N; 10 LL c[1000005], sum, M, a; 11 LL Labs( LL a ) 12 { 13 return a>0?a:-a; 14 } 15 int main( ) 16 { 17 while( scanf("%d", &N )!= EOF ){ 18 sum=0, c[0]=0; 19 for( int i=1; i<=N; ++ i ){ 20 scanf( "%lld", &a ); 21 sum+=a; 22 c[i]=sum; 23 } 24 M=sum/N; 25 sum=0; 26 for( int i=1; i<=N; ++ i ){ 27 c[i]-=i*M; 28 } 29 sort( c, c+N ); 30 M=c[N/2]; 31 for( int i=0; i<N; ++ i ){ 32 c[i]-=M; 33 sum+=Labs(c[i]); 34 } 35 printf( "%lld\n", sum ); 36 } 37 return 0; 38 }