zoukankan      html  css  js  c++  java
  • datax实战

    一、全量同步

    1.简单字段同步

    本文以mysql -> mysql为示例:

       本次测试的表为mysql的系统库-sakila中的actor表,由于不支持目的端自动建表,此处预先建立目的表:

    CREATE TABLE `actor_copy` (
      `actor_id` smallint(5) unsigned NOT NULL AUTO_INCREMENT,
      `first_name` varchar(45) NOT NULL,
      `last_name` varchar(45) NOT NULL,
      `last_update` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
      PRIMARY KEY (`actor_id`),
      KEY `idx_actor_last_name` (`last_name`)
    ) ENGINE=InnoDB AUTO_INCREMENT=201 DEFAULT CHARSET=utf8;

      通过官方快速开始提供的命令,可以查看配置模板:

     python datax.py -r {YOUR_READER} -w {YOUR_WRITER}
     python datax.py -r streamreader -w streamwriter

      打开dataX的mysqlreader以及mysqlwriter文档,编写JSON配置文件:(此处经过试验,即使是自增主键,同样需要配置,否则会报输入输出不匹配的错),加上JSON配置文件的x权限

    {
        "job": {
            "setting": {
                "speed": {
                     "channel": 3
                },
                "errorLimit": {
                    "record": 0,
                    "percentage": 0.02
                }
            },
            "content": [
                {
                    "reader": {
                        "name": "mysqlreader",
                        "parameter": {
                            "username": "root",
                            "password": "Zcc170821#",
                            "column": [
                                "actor_id",
                                "first_name",
                                "last_name",
                                "last_update"
                            ],
                            "splitPk": "actor_id",
                            "connection": [
                                {
                                    "table": [
                                        "actor"
                                    ],
                                    "jdbcUrl": [
         "jdbc:mysql://192.168.19.129:3306/sakila"
                                    ]
                                }
                            ]
                        }
                    },
                  "writer": {
                        "name": "mysqlwriter",
                        "parameter": {
                            "writeMode": "insert",
                            "username": "root",
                            "password": "Zcc170821#",
                            "column": [
                                "actor_id",
                                "first_name",
                                "last_name",
                                "last_update"
                            ],
                            "preSql": [
                                "truncate table actor_copy"
                            ],
                            "connection": [
                                {
                                    "jdbcUrl": "jdbc:mysql://192.168.19.129:3306/sakila",
                                    "table": [
                                        "actor_copy"
                                    ]
                                }
                            ]
                        }
                    }
                }
            ]
        }
    }

    这样,单表的最基本全量同步就完成了!

      通过python 命令运行即可:

    python datax.py ../job/mysqltest.json

      2.增加常量与插入时间字段

        原表正常字段,目标表多出两列:来源部门,插入时间。json配置如下:

          常量使用单引号,时间暂时未摸索到变量如何使用(以下通过启动脚本已更新方式),通过时间函数实现

    {
        "job": {
            "setting": {
                "speed": {
                     "channel": 3
                },
                "errorLimit": {
                    "record": 0,
                    "percentage": 0.02
                }
            },
            "content": [
                {
                    "reader": {
                        "name": "mysqlreader",
                        "parameter": {
                            "username": "root",
                            "password": "root",
                            "column": [
                                "actor_id",
                                "first_name",
                                "last_name",
                                "last_update",
                    "'自动生成'",
                    "NOW()"
                            ],
                            "splitPk": "actor_id",
                            "connection": [
                                {
                                    "table": [
                                        "actor"
                                    ],
                                    "jdbcUrl": [
         "jdbc:mysql://hadoop01:3306/sakila"
                                    ]
                                }
                            ]
                        }
                    },
                  "writer": {
                        "name": "mysqlwriter",
                        "parameter": {
                            "writeMode": "insert",
                            "username": "root",
                            "password": "root",
                            "column": [
                                "actor_id",
                                "first_name",
                                "last_name",
                                "last_update",
                    "src",
                    "load_time"
                            ],
                            "preSql": [
                                "truncate table actor_copy"
                            ],
                            "connection": [
                                {
                                    "jdbcUrl": "jdbc:mysql://hadoop01:3306/sakila",
                                    "table": [
                                        "actor_copy"
                                    ]
                                }
                            ]
                        }
                    }
                }
            ]
        }
    }

       2020.1.11,更新通过启动脚本控制时间戳:

        首先Json配置更改为变量:(注意变量有个单引号!

    {
        "job": {
            "setting": {
                "speed": {
                     "channel": 3
                },
                "errorLimit": {
                    "record": 0,
                    "percentage": 0.02
                }
            },
            "content": [
                {
                    "reader": {
                        "name": "mysqlreader",
                        "parameter": {
                            "username": "root",
                            "password": "root",
                            "column": [
                                "actor_id",
                                "first_name",
                                "last_name",
                                "last_update",
                    "'${src}'",
                    "'${systime}'"
                            ],
                            "splitPk": "actor_id",
                            "connection": [
                                {
                                    "table": [
                                        "actor"
                                    ],
                                    "jdbcUrl": [
         "jdbc:mysql://hadoop01:3306/sakila"
                                    ]
                                }
                            ]
                        }
                    },
                  "writer": {
                        "name": "mysqlwriter",
                        "parameter": {
                            "writeMode": "insert",
                            "username": "root",
                            "password": "root",
                            "column": [
                                "actor_id",
                                "first_name",
                                "last_name",
                                "last_update",
                    "src",
                    "load_time"
                            ],
                            "preSql": [
                                "truncate table actor_copy"
                            ],
                            "connection": [
                                {
                                    "jdbcUrl": "jdbc:mysql://hadoop01:3306/sakila",
                                    "table": [
                                        "actor_copy"
                                    ]
                                }
                            ]
                        }
                    }
                }
            ]
        }
    }

        在datax的srcipts文件下新建一个启动脚本:

    #coding:UTF-8
    from datetime import datetime
    import os
    import sys
    
    configFilePath = sys.argv[1]
    src = '自动生成'
    currentTime  = format(datetime.now(), '%Y-%m-%d %H:%M:%S')
    script2execute  = "python /opt/datax/bin/datax.py {0} -p "-Dsrc='{1}' -Dsystime='{2}'"".format( configFilePath, src, currentTime)
    os.system(script2execute)

      在srcipts下的启动命令为:

        

    python ./datax_start.py '/opt/datax/job/mysql_actor_copy_arg.json'

     二、增量同步

      增量同步的核心思路是时间戳,需要同步的表中要有Update_time字段:

      参考实现:https://www.jianshu.com/p/34b3a084d7d8

          https://blog.csdn.net/quadimodo/article/details/82186788

      增量数据和全量数据如何合并?使用full join

        https://blog.csdn.net/kx306_csdn/article/details/89508323

      当然如果有例如更新时间,修改时间字段,可以直接将增量表INTO入昨日全量,然后根据ID去重,取最新时间也是可以的

  • 相关阅读:
    反射通过控件名返回控件对象
    比较两个datatable是否一样
    计算两个DateTime间的时间差(小时差、分钟差、秒钟差等)
    在IIS中调试程序
    Using TestDriven Development and the RedGreenRefactor Workflow
    WCF单元测试
    模拟发送POST或Get请求
    DES加解密方法(C#和android通用)
    Wcf Rest Service模板方法输入输出流数据
    网游放缓页游疾进 客户端游戏会被取代吗?
  • 原文地址:https://www.cnblogs.com/jiangbei/p/11258267.html
Copyright © 2011-2022 走看看