zoukankan      html  css  js  c++  java
  • 【数据仓库】——数据仓库概念

    一、简介

      1.什么是数据仓库

      数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented )、集成的(Integrated)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策和信息的全局共享。

      //请熟练记忆粗体字!

      为什么要建立数仓?

        完成数据集合,数据清洗,支持数据分析决策OLAP

    二、特点

      1.数据仓库的特点

        1.数据仓库的数据是面向主题的

        与传统数据库面向应用进行数据组织的特点相对应,数据仓库中的数据是面向主题进行组织的。什么是主题呢?首先,主题是一个抽象的概念,是较高层次上企业信息系统中的数据综合、归类并进行分析利用的抽象。在逻辑意义上,它是对应企业中某一宏观分析领域所涉及的分析对象。面向主题的数据组织方式,就是在较高层次上对分析对象的数据的一个完整、一致的描述,能完整、统一地刻划各个分析对象所涉及的企业的各项数据,以及数据之间的联系。所谓较高层次是相对面向应用的数据组织方式而言的,是指按照主题进行数据组织的方式具有更高的数据抽象级别。例如“销售分析”就是一个分析领域,因此这个数据仓库应用的主题就是“销售分析”。

         2. 数据仓库的数据是集成的

              数据仓库的数据是从原有的分散的数据库数据抽取来的。操作型数据与DSS分析型数据之间差别甚大。第一,数据仓库的每一个主题所对应的源数据在原有的各分散数据库中有许多重复和不一致的地方,且来源于不同的联机系统的数据都和不同的应用逻辑捆绑在一起;第二,数据仓库中的综合数据不能从原有的数据库系统直接得到。因此在数据进入数据仓库之前,必然要经过统一与综合,这一步是数据仓库建设中最关键、最复杂的一步,所要完成的工作有:
        (1)要统一源数据中所有矛盾之处,如字段的同名异义、异名同义、单位不统一、字长不一致,等等。
        (2)进行数据综合和计算。数据仓库中的数据综合工作可以在从原有数据库抽取 数据时生成,但许多是在数据仓库内部生成的,即进入数据仓库以后进行综合生成的。

         3. 数据仓库的数据是不可更新的

             数据仓库的数据主要供企业决策分析之用,所涉及的数据操作主要是数据查询,一般情况下并不进行修改操作。数据仓库的数据反映的是一段相当长的时间内历史数据的内容,是不同时点的数据库快照的集合,以及基于这些快照进行统计、综合和重组的导出数据,而不是联机处理的数据。数据库中进行联机处理的数据经过集成输入到数据仓库中,一旦数据仓库存放的数据已经超过数据仓库的数据存储期限,这些数据将从当前的数据仓库中删去。因为数据仓库只进行数据查询操作,所以数据仓库管理系统相比数据库管理系统而言要简单得多。数据库管理系统中许多技术难点,如完整性保护、并发控制等等,在数据仓库的管理中几乎可以省去。但是由于数据仓库的查询数据量往往很大,所以就对数据查询提出了更高的要求,它要求采用各种复杂的索引技术;同时由于数据仓库面向的是商业企业的高层管理者,他们会对数据查询的界面友好性和数据表示提出更高的要求。

          4. 数据仓库的数据是随时间不断变化的

           数据仓库中的数据不可更新是针对应用来说的,也就是说,数据仓库的用户进行分析处理时是不进行数据更新操作的。但并不是说,在从数据集成输入数据仓库开始到最终被删除的整个数据生存周期中,所有的数据仓库数据都是永远不变的。
        数据仓库的数据是随时间的变化而不断变化的,这是数据仓库数据的第四个特征。这一特征表现在以下3方面:
        (1)数据仓库随时间变化不断增加新的数据内容。数据仓库系统必须不断捕捉OLTP数据库中变化的数据,追加到数据仓库中去,也就是要不断地生成OLTP数据库的快照,经统一集成后增加到数据仓库中去;但对于确实不再变化的数据库快照,如果捕捉到新的变化数据,则只生成一个新的数据库快照增加进去,而不会对原有的数据库快照进行修改。
        (2)数据仓库随时间变化不断删去旧的数据内容。数据仓库的数据也有存储期限,一旦超过了这一期限,过期数据就要被删除。只是数据仓库内的数据时限要远远长于操作型环境中的数据时限。在操作型环境中一般只保存有60~90天的数据,而在数据仓库中则需要保存较长时限的数据(如5~10年),以适应DSS进行趋势分析的要求。
        (3)数据仓库中包含有大量的综合数据,这些综合数据中很多跟时间有关,如数据经常按照时间段进行综合,或隔一定的时间片进行抽样等等。这些数据要随着时间的变化不断地进行重新综合。因此,数据仓库的数据特征都包含时间项,以标明数据的历史时期。

      更多相关的特点与介绍,参考百度百科https://baike.baidu.com/item/%E6%95%B0%E6%8D%AE%E4%BB%93%E5%BA%93/381916?fr=aladdin

                   网友博文http://student-lp.iteye.com/blog/2183992

    三、发展历程

      参考上文百度百科

    四、数据仓库与数据库区别

      数据仓库和数据库的不同:数据库生产系统主要是面向应用的、事物型的数据处理,一般来说具有实时性较高,数据检索量较小,普通用户的数量较大等特点。而数据仓库系统主要面向主题的、分析型的数据处理,具有实时性要求不高,数据检索量较大,主要针对特殊的用户群体,用户数量较小的特点。其中事务型和分析型处理数据是有区别的:

    • 事务型处理数据一般来说对性能的要求较为严格,数据是事务驱动的,主要面向应用,存储的一般都是即时性、细节性的数据,数据是可更新的。
    • 分析型处理数据一般来说对性能要求不高,数据是分析驱动的,主要面向决策分析,存储的一般都是历史、汇总性的数据,数据一般不会更新。

      

      

     五、数据仓库架构与分层 

      数据仓库标准上可以分为四层:ODS(临时存储层)、PDW(数据仓库层)、DM(数据集市层)、APP(应用层)。 

      强推分类:http://bigdata.51cto.com/art/201710/554810.htm

      :ODS【-MID】-DW-DM-OLAP/OLAM/app

      ODS层:Operational Data Store

      为临时存储层,是接口数据的临时存储区域,为后一步的数据处理做准备。一般来说ODS层的数据和源系统的数据是同构的,主要目的是简化后续数据加工处理的工作。从数据粒度上来说ODS层的数据粒度是最细的。ODS层的表通常包括两类,一个用于存储当前需要加载的数据,一个用于存储处理完后的历史数据。历史数据一般保存3-6个月后需要清除,以节省空间。但不同的项目要区别对待,如果源系统的数据量不大,可以保留更长的时间,甚至全量保存;

      PDW层:

      为数据仓库层,PDW层的数据应该是一致的、准确的、干净的数据,即对源系统数据进行了清洗(去除了杂质)后的数据。这一层的数据一般是遵循数据库第三范式的,其数据粒度通常和ODS的粒度相同。在PDW层会保存BI系统中所有的历史数据,例如保存10年的数据。

      DM层:

      为数据集市层,这层数据是面向主题来组织数据的,通常是星形或雪花结构的数据。从数据粒度来说,这层的数据是轻度汇总级的数据,已经不存在明细数据了。从数据的时间跨度来说,通常是PDW层的一部分,主要的目的是为了满足用户分析的需求,而从分析的角度来说,用户通常只需要分析近几年(如近三年的数据)的即可。从数据的广度来说,仍然覆盖了所有业务数据。

      APP层:

      为应用层,这层数据是完全为了满足具体的分析需求而构建的数据,也是星形或雪花结构的数据。从数据粒度来说是高度汇总的数据。从数据的广度来说,则并不一定会覆盖所有业务数据,而是DM层数据的一个真子集,从某种意义上来说是DM层数据的一个重复。从极端情况来说,可以为每一张报表在APP层构建一个模型来支持,达到以空间换时间的目的数据仓库的标准分层只是一个建议性质的标准,实际实施时需要根据实际情况确定数据仓库的分层,不同类型的数据也可能采取不同的分层方法。

      ODS(数据操作层 Operational Data Store,从源表抽取过来(数据着落区),例如通过阿里Data X 等工具从业务库抽取到ODPS,也就是托管的数仓,主要用于海量数据存储和计算)

      ——>DWD(数据清洗层 data warehouse detail,经过了ETL等数据清洗的操作之后的数据,例如时间字段的统一,单位的统一,相关字段的增加)

      ——>DM(主题层,数据集市层,面向主题构建的数据,利用表连接等操作,生成宽表等星型模型和雪花模型)

      基本上,大的分层分为三层:

        业务数据层(ODS)

        公共数据层(DWD、DWS、DIM)

        应用数据层(ADS)

  • 相关阅读:
    leetcode33. Search in Rotated Sorted Array
    pycharm 设置sublime text3 monokai主题
    django class Meta
    leetcode30, Substring With Concatenation Of All Words
    Sublime text3修改tab键为缩进为四个空格,
    sublime text3 python打开图像的问题
    安装上imesupport输入法依然不跟随的解决办法,
    sublime text3 的插件冲突弃用问题,
    sublime text3 BracketHighlighter括号匹配的设置
    windows 下wget的使用
  • 原文地址:https://www.cnblogs.com/jiangbei/p/8483591.html
Copyright © 2011-2022 走看看