将小数组归并到大数组里
Merge Sorted Array
Given two sorted integer arrays A and B, merge B into A as one sorted array.
Example
A = [1, 2, 3, empty, empty]
, B = [4, 5]
After merge, A will be filled as [1, 2, 3, 4, 5]
2点需要注意的:
1. inplace merge,从后往前走
2. 3个while 循环的控制条件
1. a != null && b != null
2. a != null
3. b != null
看似简单,反正我没写出来
class Solution { public void mergeSortedArray(int[] A, int m, int[] B, int n) { // write your code here int total = m + n - 1; int index1 = m - 1; int index2 = n - 1; while (index1 >= 0 && index2 >= 0) { if (A[index1] >= B[index2]) { A[total--] = A[index1--]; } else { A[total--] = B[index2--]; } } while (index2 >= 0) { A[total--] = B[index2--]; } while (index1 >= 0) { A[total--] = A[index1--]; } } }
---------------------------------分割线-----------------------------------
两个数组的交
Given two arrays, write a function to compute their intersection.
Example:
Given nums1 = [1, 2, 2, 1]
, nums2 = [2, 2]
, return [2]
.
方法1: hashset 为了去重,果然需要2个set
另外,为了把第二个set里的结果转化为数组,还需要第三个for循环
Time = O(n).
Space = O(n).
1 public class Solution { 2 public int[] intersection(int[] nums1, int[] nums2) { 3 HashSet<Integer> set1 = new HashSet<Integer>(); 4 for(int i: nums1){ 5 set1.add(i); 6 } 7 8 HashSet<Integer> set2 = new HashSet<Integer>(); 9 for(int i: nums2){ 10 if(set1.contains(i)){ 11 set2.add(i); 12 } 13 } 14 15 int[] result = new int[set2.size()]; 16 int i = 0; 17 for(int n: set2){ 18 result[i++] = n; 19 } 20 return result; 21 } 22 }
方法2: sort+ 2个指针
我们还可以使用两个指针来做,先给两个数组排序,然后用两个指针分别指向两个数组的开头,然后比较两个数组的大小,把小的数字的指针向后移,如果两个指针指的数字相等,那么看结果res是否为空,如果为空或者是最后一个数字和当前数字不等的话,将该数字加入结果res中,参见代码如下:
public class Solution { public int[] intersection(int[] nums1, int[] nums2) { if (nums1 == null || nums1.length == 0) { return nums1; } if (nums2 == null || nums2.length == 0) { return nums2; } Arrays.sort(nums1); Arrays.sort(nums2); int i, j; int size1 = nums1.length; int size2 = nums2.length; ArrayList<Integer> res = new ArrayList<Integer>(); for (i = 0, j = 0 ; i < size1 && j < size2;) { if (nums1[i] == nums2[j]) { if ((!res.isEmpty() && nums1[i] != res.get(res.size() - 1)) || res.isEmpty()) { res.add(nums1[i]); } i++; j++; } else if (nums1[i] > nums2[j]) { j++; } else { i++; } } int[] result = new int[res.size()]; i = 0; for (int temp : res) { result[i++] = temp; } return result; } }
方法3: sort 2个array 然后遍历nums1,用binary search 来查找
Arrays.binarySearch(nums2, nums1[i])) 666还能这么玩
public class Solution { public int[] intersection(int[] nums1, int[] nums2) { if (nums1 == null || nums1.length == 0) { return nums1; } if (nums2 == null || nums2.length == 0) { return nums2; } Arrays.sort(nums1); Arrays.sort(nums2); int size1 = nums1.length; ArrayList<Integer> res = new ArrayList<Integer>(); for (int i = 0; i < size1; i++) { if (i == 0 || nums1[i] != nums1[i - 1]) { if ((Arrays.binarySearch(nums2, nums1[i])) > -1) { res.add(nums1[i]); } } } int[] result = new int[res.size()]; int i = 0; for (int temp : res) { result[i++] = temp; } return result; } }
---------------------------------分割线-----------------------------------
快速排序系列 http://www.cnblogs.com/jiangchen/p/5935651.html
---------------------------------分割线-----------------------------------
股票问题,prefix sum运用,序列型动态规划 详见
http://www.cnblogs.com/jiangchen/p/5820378.html
---------------------------------分割线-----------------------------------
subarray 问题
动态规划部分 见
http://www.cnblogs.com/jiangchen/p/5820378.html
Subarray Sum
Given an integer array, find a subarray where the sum of numbers is zero. Your code should return the index of the first number and the index of the last number.
public class Solution { /** * @param nums: A list of integers * @return: A list of integers includes the index of the first number * and the index of the last number */ public ArrayList<Integer> subarraySum(int[] nums) { // write your code here int firstIndex = 0, sum = 0; while (firstIndex < nums.length) { sum = 0; for (int i = firstIndex; i < nums.length ; i++) { sum += nums[i]; if (sum == 0) { ArrayList<Integer> result = new ArrayList<Integer>(); result.add(firstIndex); result.add(i); return result; } } firstIndex++; } return null; } }
Minimum Size Subarray Sum
Given an array of n positive integers and a positive integer s, find the minimal length of a subarray of which the sum ≥ s. If there isn't one, return 0 instead.
For example, given the array [2,3,1,2,4,3]
and s = 7
,
the subarray [4,3]
has the minimal length under the problem constraint.
从左往右遍历第一个起始位置,注意,当起始位置向右边移动一个位置的时候,终止位置从上个循环的终止位置开始,避免了重复计算!
public class Solution { public int minSubArrayLen(int s, int[] nums) { // write your code here int j = 0, i = 0; int sum =0; int ans = Integer.MAX_VALUE; for(i = 0; i < nums.length; i++) { while(j < nums.length && sum < s ) { sum += nums[j]; j ++; } if(sum >=s) ans = Math.min(ans, j - i ); sum -= nums[i]; } if(ans == Integer.MAX_VALUE) ans = 0; return ans; } }
Subarray Sum Closest
Given an integer array, find a subarray with sum closest to zero. Return the indexes of the first number and last number.
Given [-3, 1, 1, -3, 5]
, return [0, 2]
, [1, 3]
,[1, 1]
, [2, 2]
or [0, 4]
.
那个-1 是因为,把前i个数转换为他的index
最后+1 是因为取2个presum中间部分,其实部分为res[0]的后一个点开始所以要+1
class Pairs { int sum; int index; public Pairs (int s, int i) { this.sum = s; this.index =i; } } public class Solution { /** * @param nums: A list of integers * @return: A list of integers includes the index of the first number * and the index of the last number */ private static Comparator<Pairs> SumComparator = new Comparator<Pairs>() { public int compare(Pairs a, Pairs b) { return a.sum - b.sum; } }; public int[] subarraySumClosest(int[] nums) { // write your code here if (nums == null || nums.length == 0) { return new int[]{0, 0}; } int len = nums.length; if (len == 1) { return new int[]{0, 0}; } PriorityQueue<Pairs> queue = new PriorityQueue<Pairs>(nums.length, SumComparator); int preSum = 0; queue.offer(new Pairs(0,0)); for (int i = 1; i <= len; i++) { preSum += nums[i - 1]; Pairs temp = new Pairs(preSum, i); queue.offer(temp); } int[] res = new int[2]; int diff = Integer.MAX_VALUE; for (int i = 0; i < len - 1; i++) { Pairs temp = queue.poll(); //System.out.println("debug" + queue.peek().sum + " " + temp.sum ); if (queue.peek().sum - temp.sum < diff) { diff = queue.peek().sum - temp.sum; res[0] = temp.index - 1; res[1] = queue.peek().index - 1; //this -1 means from the first index to actually index } } Arrays.sort(res); //this add means from the index res[0] but not include res[0] res[0]++; return res; } }