zoukankan      html  css  js  c++  java
  • pytorch中torch.chunk()方法

    chunk方法可以对张量分块,返回一个张量列表:

    torch.chunk(tensorchunksdim=0) → List of Tensors

    Splits a tensor into a specific number of chunks.

    Last chunk will be smaller if the tensor size along the given dimension dim is not divisible by chunks.(如果指定轴的元素个数被chunks除不尽,那么最后一块的元素个数变少)

    Parameters:
    • tensor (Tensor) – the tensor to split
    • chunks (int) – number of chunks to return(分割的块数)
    • dim (int) – dimension along which to split the tensor(沿着哪个轴分块)
     
    import numpy as np
    import torch
    
    data = torch.from_numpy(np.random.rand(3, 5))
    print(str(data))
    >>
    tensor([[0.6742, 0.5700, 0.3519, 0.4603, 0.9590],
            [0.9705, 0.8673, 0.8854, 0.9029, 0.5473],
            [0.0199, 0.4729, 0.4001, 0.7581, 0.5045]], dtype=torch.float64)
    
    for i, data_i in enumerate(data.chunk(5, 1)): # 沿1轴分为5块
        print(str(data_i))
    >>
    tensor([[0.6742],
            [0.9705],
            [0.0199]], dtype=torch.float64)
    tensor([[0.5700],
            [0.8673],
            [0.4729]], dtype=torch.float64)
    tensor([[0.3519],
            [0.8854],
            [0.4001]], dtype=torch.float64)
    tensor([[0.4603],
            [0.9029],
            [0.7581]], dtype=torch.float64)
    tensor([[0.9590],
            [0.5473],
            [0.5045]], dtype=torch.float64)  
    
    for i, data_i in enumerate(data.chunk(3, 0)): # 沿0轴分为3块
        print(str(data_i))
    >>
    tensor([[0.6742, 0.5700, 0.3519, 0.4603, 0.9590]], dtype=torch.float64)
    tensor([[0.9705, 0.8673, 0.8854, 0.9029, 0.5473]], dtype=torch.float64)
    tensor([[0.0199, 0.4729, 0.4001, 0.7581, 0.5045]], dtype=torch.float64)
       
    for i, data_i in enumerate(data.chunk(3, 1)): # 沿1轴分为3块,除不尽
        print(str(data_i))
    >>
    tensor([[0.6742, 0.5700],
            [0.9705, 0.8673],
            [0.0199, 0.4729]], dtype=torch.float64)
    tensor([[0.3519, 0.4603],
            [0.8854, 0.9029],
            [0.4001, 0.7581]], dtype=torch.float64)
    tensor([[0.9590],
            [0.5473],
            [0.5045]], dtype=torch.float64)

     

  • 相关阅读:
    centos 部署.NET CORE
    nginx 负载均衡
    graylog centos7 部署
    springboot 2.x centos 7.0 部署
    HashMap源代码阅读理解
    服务器安装redis
    java ---- gradle
    uboot-makefile总览
    makeFile
    Spring 推断构造方法
  • 原文地址:https://www.cnblogs.com/jiangkejie/p/10309766.html
Copyright © 2011-2022 走看看