zoukankan      html  css  js  c++  java
  • Pytorch自定义参数层

    注意,一般官方接口都带有可导功能,如果你实现的层不具有可导功能,就需要自己实现梯度的反向传递。

     1 官方Linear层:
     2 class Linear(Module):
     3     def __init__(self, in_features, out_features, bias=True):
     4         super(Linear, self).__init__()
     5         self.in_features = in_features
     6         self.out_features = out_features
     7         self.weight = Parameter(torch.Tensor(out_features, in_features))
     8         if bias:
     9             self.bias = Parameter(torch.Tensor(out_features))
    10         else:
    11             self.register_parameter('bias', None)
    12         self.reset_parameters()
    13 
    14     def reset_parameters(self):
    15         stdv = 1. / math.sqrt(self.weight.size(1))
    16         self.weight.data.uniform_(-stdv, stdv)
    17         if self.bias is not None:
    18             self.bias.data.uniform_(-stdv, stdv)
    19 
    20     def forward(self, input):
    21         return F.linear(input, self.weight, self.bias)
    22 
    23     def extra_repr(self):
    24         return 'in_features={}, out_features={}, bias={}'.format(
    25             self.in_features, self.out_features, self.bias is not None
    26         )
    1 实现view层
    2 class Reshape(nn.Module):
    3     def __init__(self, *args):
    4         super(Reshape, self).__init__()
    5         self.shape = args
    6 
    7     def forward(self, x):
    8         return x.view((x.size(0),)+self.shape)
     1 实现LinearWise层
     2 class LinearWise(nn.Module):
     3     def __init__(self, in_features, bias=True):
     4         super(LinearWise, self).__init__()
     5         self.in_features = in_features
     6 
     7         self.weight = nn.Parameter(torch.Tensor(self.in_features))
     8         if bias:
     9             self.bias = nn.Parameter(torch.Tensor(self.in_features))
    10         else:
    11             self.register_parameter('bias', None)
    12         self.reset_parameters()
    13 
    14     def reset_parameters(self):
    15         stdv = 1. / math.sqrt(self.weight.size(0))
    16         self.weight.data.uniform_(-stdv, stdv)
    17         if self.bias is not None:
    18             self.bias.data.uniform_(-stdv, stdv)
    19 
    20     def forward(self, input):
    21         x = input * self.weight
    22         if self.bias is not None:
    23             x = x + self.bias
    24         return x
  • 相关阅读:
    第十六周学习进度报告
    个人课程总结
    第一阶段意见评论
    用户评价
    第二阶段10
    第二阶段9
    第二阶段8
    第十五周学习进度报告
    第二阶段7
    第二阶段6
  • 原文地址:https://www.cnblogs.com/jiangkejie/p/11207922.html
Copyright © 2011-2022 走看看