zoukankan      html  css  js  c++  java
  • SVM学习笔记5-SMO

    首先拿出最后要求解的问题:$underset{alpha}{min}W(alpha)=frac{1}{2} sum_{i,j=1}^{n}y^{(i)}y^{(j)}alpha_{i}alpha_{j}k_{ij}-sum_{i=1}^{n}alpha_{i}$,使得满足:
    (1)$0 leq alpha_{i}leq C,1 leq i leq n$
    (2)$sum_{i=1}^{n}alpha_{i}y^{(i)}=0$

    求解的策略是每次选出两个$alpha$进行更新。比如选取的是$alpha_{1},alpha_{2}$。由于$sum_{i=1}^{n}alpha_{i}y^{(i)}=0$,所以$alpha_{1}y^{(1)}+alpha_{2}y^{(2)}=-sum_{i=3}^{n}alpha_{i}y^{(i)}$。等号右侧是一个常数,设为$xi$。当$y^{(1)}$和$y^{(2)}$异号时,有$alpha_{1}-alpha_{2}=xi$或者$alpha_{2}-alpha_{1}=xi$。同时它们还要满足$0leq alpha leq C$。

    我们设$alpha_{2}$的合法区间为[L,R],那么此时有$L=max(0,alpha_{2}-alpha_{1}),R=min(C,C+alpha_{2}-alpha_{1})$。同理当$y^{(1)}$和$y^{(2)}$同号时有$L=max(0,alpha_{2}+alpha_{1}-C),R=min(C,alpha_{2}+alpha_{1})$。

    首先定义$u=w^{T}x+b$

    将$alpha_{1},alpha_{2}$带入$W(alpha)$中得到:
    $W(alpha)=frac{1}{2}(k_{11}alpha_{1}^{2}+k_{22}alpha_{2}^{2})+sk_{12}alpha_{1}alpha_{2}+y^{(1)}alpha_{1}v_{1}+y^{(2)}alpha_{2}v_{2}-alpha_{1}-alpha_{2}+P$

    其中:
    (1)$s=y^{(1)}y^{(2)}$
    (2)$v_{1}=sum_{i=3}^{n}y^{(i)}alpha_{i}k_{1i}=u_{1}-b-y^{(1)}alpha_{1}^{old}k_{11}-y^{(2)}alpha_{2}^{old}k_{12}$
    (3)$v_{2}=sum_{i=3}^{n}y^{(i)}alpha_{i}k_{2i}=u_{2}-b-y^{(1)}alpha_{1}^{old}k_{12}-y^{(2)}alpha_{2}^{old}k_{22}$

    由于$y^{(1)}alpha_{1}+y^{(2)}alpha_{2}=y^{(1)}alpha_{1}^{old}+y^{(2)}alpha_{2}^{old}=xi$
    两边同时乘以$y^{(1)}$,得到$alpha_{1}+salpha_{2}=alpha_{1}^{old}+salpha_{2}^{old}=y^{(1)}xi=T$

    所以$alpha_{1}=T-salpha_{2}$,将其带入$W(alpha)$,得到$W(alpha)=frac{1}{2}(k_{11}(T-salpha_{2})^{2}+k_{22}alpha_{2}^{2})+sk_{12}(T-salpha_{2})alpha_{2}+y^{(1)}(T-salpha_{2})v_{1}+y^{(2)}alpha_{2}v_{2}-(T-salpha_{2})-alpha_{2}+P$

    其实这是一个关于$alpha_{2}$的二次函数,在一阶导数等于0的地方取得最小值,一阶导数为:$frac{partial W}{partial alpha_{2}}=-sk_{11}(T-salpha_{2})+k_{22}alpha_{2}+sk_{12}(T-salpha_{2})-k_{12}alpha_{2}-y^{(2)}v_{1}+y^{(2)}v_{2}+s-1=0$

    移项得:$alpha_{2}(k_{11}+k_{22}-2k_{12})=s(k_{11}-k_{12})T+y^{(2)}(v_{1}-v_{2})+1-s$

    将$v_{1},v_{2}$带入得:$alpha_{2}(k_{11}+k_{22}-2k_{12})=alpha_{2}^{old}(k_{11}+k_{22}-2k_{12})+y^{(2)}(u_{1}-u_{2}+y^{(2)}-y^{(1)})$

    令:
    (1)$eta =k_{11}+k_{22}-2k_{12}$
    (2)$E_{1}=u_{1}-y^{(1)}$
    (3)$E_{2}=u_{2}-y^{(2)}$

    那么有:
    $alpha_{2}^{new}=alpha_{2}^{old}+frac{y^{(2)}(E_{1}-E_{2})}{eta }$

    这里就求出了新的$alpha_{2}$。需要注意的是如果$alpha_{2}$不在上面求出的[L,R]区间,要做一下裁剪。

    由$y^{(1)}alpha_{1}+y^{(2)}alpha_{2}=y^{(1)}alpha_{1}^{old}+y^{(2)}alpha_{2}^{old}$可得:
    $alpha_{1}^{new}=alpha_{1}^{old}+y^{(1)}y^{(2)}(alpha_{2}^{old}-alpha_{2}^{new})$

    最后更新b
    $b=left{egin{matrix} b_{1} & 0<alpha_{1}<C\
    b_{2} & 0<alpha_{2}<C\
    frac{1}{2}(b_{1}+b_{2}) & other
    end{matrix} ight.$

    其中
    $b_{1}=b-E_{1}-y^{(1)}(alpha_{1}^{new}-alpha_{1}^{old})k_{11}-y^{(2)}(alpha_{2}^{new}-alpha_{2}^{old})k_{12}$
    $b_{2}=b-E_{2}-y^{(1)}(alpha_{1}^{new}-alpha_{1}^{old})k_{12}-y^{(2)}(alpha_{2}^{new}-alpha_{2}^{old})k_{22}$

    这样更新b会迫使输入$x_{1}$时输出$y^{(1)}$,输入$x_{2}$时输出$y^{(2)}$

    from numpy import *
    import operator
    from time import sleep
    import numpy as np;
    from svmplatt import *;
    import matplotlib.pyplot as plt 
    
    class PlattSVM(object):
            def __init__(self):
                    self.X = []   
                    self.labelMat = []
                    self.C = 0.0   
                    self.tol = 0.0  
                    self.b = 0.0   
                    self.kValue=0.0
                    self.maxIter=10000
                    self.svIndx=[] 
                    self.sptVects=[]  
                    self.SVlabel=[] 
    
            def loadDataSet(self,fileName):
                    fr = open(fileName)
                    for line in fr.readlines():
                            lineArr = line.strip().split('	')
                            self.X.append([float(lineArr[0]), float(lineArr[1])])
                            self.labelMat.append(float(lineArr[2]))
                    self.initparam()        
                 
            def kernels(self,dataMat,A):
                    m,n=shape(dataMat)
                    K=mat(zeros((m,1)))
                    for j in range(m):
                            delta=dataMat[j,:]-A
                            K[j]=delta*delta.T
                    K=exp(K/-1*self.kValue**2)
                    return K
            
            def initparam(self):
                    self.X = mat(self.X)                  
                    self.labelMat = mat(self.labelMat).T   
                    self.m = shape(self.X)[0]            
                    self.lambdas = mat(zeros((self.m,1)))        
                    self.eCache = mat(zeros((self.m,2)))  
                    self.K = mat(zeros((self.m,self.m)))  
                    for i in range(self.m):
                            self.K[:,i] = self.kernels(self.X,self.X[i,:])
                            
         
            def randJ(self,i):
                    j=i 
                    while(j==i):
                            j = int(random.uniform(0,self.m))
                    return j
            
         
            def clipLambda(self,aj,H,L):
                    if aj > H: aj = H
                    if L > aj: aj = L
                    return aj
                    
            def calcEk(self,k):
                    return float(multiply(self.lambdas,self.labelMat).T*self.K[:,k] + self.b) - float(self.labelMat[k])
            
           
            def chooseJ(self,i,Ei):
                    maxK = -1; maxDeltaE = 0; Ej = 0
                    self.eCache[i] = [1,Ei]                 
                    validEcacheList = nonzero(self.eCache[:,0].A)[0] 
                    if (len(validEcacheList)) > 1:
                            for k in validEcacheList:
                                    if k == i: continue
                                    Ek = self.calcEk(k)
                                    deltaE = abs(Ei - Ek)
                                    if (deltaE > maxDeltaE):
                                            maxK = k; maxDeltaE = deltaE; Ej = Ek
                            return maxK, Ej
                    else:
                                    j = self.randJ(i)
                                    Ej = self.calcEk(j)
                    return j, Ej
                    
            
            def innerLoop(self,i):
                    Ei = self.calcEk(i) 
                  
                    if ((self.labelMat[i]*Ei < -self.tol) and (self.lambdas[i] < self.C)) or ((self.labelMat[i]*Ei > self.tol) and (self.lambdas[i] > 0)):
                            j,Ej = self.chooseJ(i, Ei) 
                            lambdaIold = self.lambdas[i].copy(); lambdaJold = self.lambdas[j].copy();                       
                            if (self.labelMat[i] != self.labelMat[j]):
                                    L = max(0, self.lambdas[j] - self.lambdas[i])
                                    H = min(self.C, self.C + self.lambdas[j] - self.lambdas[i])
                            else:
                                    L = max(0, self.lambdas[j] + self.lambdas[i] - self.C)
                                    H = min(self.C, self.lambdas[j] + self.lambdas[i])
                            if L==H:        return 0
                            eta = 2.0 * self.K[i,j] - self.K[i,i] - self.K[j,j] 
                            if eta >= 0:    return 0
                            self.lambdas[j] -= self.labelMat[j]*(Ei - Ej)/eta 
                            self.lambdas[j] = self.clipLambda(self.lambdas[j],H,L) 
                            self.eCache[j] = [1,self.calcEk(j)]     
                            if (abs(self.lambdas[j] - lambdaJold) < 0.00001):       return 0
                            self.lambdas[i] += self.labelMat[j]*self.labelMat[i]*(lambdaJold - self.lambdas[j]) 
                            self.eCache[i] = [1,self.calcEk(i)]    
                            
                            b1 = self.b - Ei- self.labelMat[i]*(self.lambdas[i]-lambdaIold)*self.K[i,i] - self.labelMat[j]*(self.lambdas[j]-lambdaJold)*self.K[i,j]
                            b2 = self.b - Ej- self.labelMat[i]*(self.lambdas[i]-lambdaIold)*self.K[i,j] - self.labelMat[j]*(self.lambdas[j]-lambdaJold)*self.K[j,j]
                        
                            if (0 < self.lambdas[i]) and (self.C > self.lambdas[i]): self.b = b1
                            elif (0 < self.lambdas[j]) and (self.C > self.lambdas[j]): self.b = b2
                            else: self.b = (b1 + b2)/2.0;
                            return 1
                    else: return 0
              
            def train(self):    #full Platt SMO
                    step = 0                
                    entireflag = True; lambdaPairsChanged = 0 
                
                    while (step < self.maxIter) and ((lambdaPairsChanged > 0) or (entireflag)):
                            lambdaPairsChanged = 0
                            if entireflag:
                                    for i in range(self.m):
                                            lambdaPairsChanged += self.innerLoop(i)
                                    step += 1
                            else: 
                                    nonBoundIs = nonzero((self.lambdas.A > 0) * (self.lambdas.A < self.C))[0]                                  for i in nonBoundIs:                                         lambdaPairsChanged += self.innerLoop(i)                                 step += 1                         if entireflag: entireflag = False                          elif (lambdaPairsChanged == 0): entireflag = True                   self.svIndx = nonzero(self.lambdas.A>0)[0]              
                    self.sptVects = self.X[self.svIndx]            
                    self.SVlabel = self.labelMat[self.svIndx]      
    
            def scatterplot(self,plt):
                    fig = plt.figure()
                    ax = fig.add_subplot(111) 
                    for i in range(shape(self.X)[0]):
                            if self.lambdas[i] != 0: 
                                    ax.scatter(self.X[i,0],self.X[i,1],c='green',marker='s',s=50)           
                            elif self.labelMat[i] == 1:
                                    ax.scatter(self.X[i,0],self.X[i,1],c='blue',marker='o')
                            elif self.labelMat[i] == -1:
                                    ax.scatter(self.X[i,0],self.X[i,1],c='red',marker='o')
    
    
    
    svm = PlattSVM()
    svm.C=70  
    svm.tol=0.001  
    svm.maxIter=2000
    svm.kValue= 3.0 
    svm.loadDataSet('nolinear.txt')
    
    svm.train()
    
    print(svm.svIndx)
    print(shape(svm.sptVects)[0])
    print("b:",svm.b)
    
    svm.scatterplot(plt)
    plt.show()
    

     

    实验结果

  • 相关阅读:
    深入解析MySQL分区(Partition)功能
    使用mysqlreplicate命令快速搭建 Mysql 主从复制
    MySQL优化/面试,看这一篇就够了
    Nginx+Keepalived高可用集群
    高并发核心技术
    Redis详解
    memcached 常用命令及使用说明
    MemCached详解
    音频和视频
    frameset 和iframe框架标签
  • 原文地址:https://www.cnblogs.com/jianglangcaijin/p/6374064.html
Copyright © 2011-2022 走看看