zoukankan      html  css  js  c++  java
  • topcoder srm 663 div1

    problem1 link

    每次枚举$S$的两种变化,并判断新的串是否是$T$的子串。不是的话停止搜索。

    problem2 link

    首先考慮增加1个面值为1的硬币后,$ways$数组有什么变化。设原来的方案为$w_{0}$,现在的为$w_{1}$。那么有$w_{1}[i]=w_{0}[i]+w_{0}[i-1]$。

    $w_{0}: 1,5,6,7,0$

    $w_{1}: 1,6,11,13,7$

    如果将上面的例子中的$w_{0},w_{1}$看作多项式的话,就有$w_{0}=1+5x+6x^{2}+7x^{3}$,$w_{1}=1+6x+11x^{2}+13x^{3}+7x_{4}=(1+5x+6x^{2}+7x^{3})(1+x)=(1+x)w_{0}$

    同理,面值为1的硬币增加$k$的话,就有$w_{1}[i]=sum_{t=0}^{k}w_{0}[i-t]$,即多项式的话就是$w_{1}=(1+x)^{k}w_{0}$。如果是面值$v$的增加$k$的话,就是$w_{1}=(1+x^{v})^{k}w_{0}$。所以这里跟面值是1的是类似的。只分析面试为1的即可。

    题目中是已知$w_{1}$来计算$w_{0}$,那么有$w_{0}=frac{w_{1}}{(1+x)^{k}}$。

    因为$ frac{1}{1+x}=1-x+x^{2}-x^{3}+x^{4}... ightarrow  frac{1}{(1+x)^{k}}=(1-x+x^{2}-x^{3}+x^{4}...)^{k}=sum_{ngeq 0}(-1)^{n}C_{k+n-1}^{n}x^{n}$

    所以如果$w_{1}=sum_{i=0}^{D}a_{i}x^{i},w_{0}=sum_{i=0}^{D}b_{i}x^{i}$

    那么$b_{D}=sum_{igeq 0}(-1)^{i}C_{k+i-1}^{i}a_{D-i}$

    如果是面值为$v$的增加$k$个的话就有$b_{D}=sum_{igeq 0}(-1)^{i}C_{k+i-1}^{i}a_{D-iv}$.

    这个代码是$O(qD)$的复杂度。不过一直超时,不知道怎么回事。

    problem3 link

    将卡片以及操作看作是图的顶点和边。每个节点有一个颜色$A$或者$B$。首先,节点0的颜色永远不会变。最后所有节点的颜色都会变成节点0的颜色。假设$[1,n-1]$中与节点0相同颜色的节点有$x$个。将这些节点称为$good$

    一个结论是在任意次操作后(直到结束前),所有$x$个$good$节点的分布情况是等概率的。

    所以可以计算一开始有$0,1,2,...,n-1$个$good$节点的期望。设$i$个点的时候的期望为$f(i)$。那么经过一次操作后,$i$个$good$点有可能变为$i-1,i,i+1$个$good$点,设概率为$p_{1},p_{2},p_{3}$

    其中$p_{1}=frac{C_{i+1}^{2}+C_{n-(i+1)}^{2}}{C_{n}^{2}}$,$p_{2}=frac{i(n-(i+1))}{2C_{n}^{2}},p_{3}=1-p_{1}-p_{2}$

    转移方程为$f(i)=p_{1}f(i)+p_{2}f(i-1)+p_{3}f(i+1)+t$,

    $t=left{egin{matrix} 0 & i eq s\  frac{1}{C_{n-1}^{s}} & i=s end{matrix} ight.$

    $s$为输入中$good$ 节点的个数。

    求出$f$数组后,答案为$frac{sum_{i=0}^{n-1}f(i)C_{n-1}^{i}}{2^{n}}$

    code for problem1

    #include <algorithm>
    #include <string>
    #include <unordered_set>
    #include <vector>
    
    class ABBADiv1 {
     public:
      std::string canObtain(const std::string &a, const std::string &b) {
        int n = static_cast<int>(b.size());
        sub_sets.resize(n + 1);
        for (int i = 0; i < n; ++i) {
          for (int j = i; j < n; ++j) {
            int len = j - i + 1;
            std::string s = b.substr(i, len);
            sub_sets[len].insert(s);
            std::reverse(s.begin(), s.end());
            sub_sets[len].insert(s);
          }
        }
        if (Dfs(a, b)) {
          return "Possible";
        }
        return "Impossible";
      }
    
     private:
      std::vector<std::unordered_set<std::string>> sub_sets;
    
      bool Exist(const std::string &s) { return sub_sets[s.size()].count(s) > 0; }
    
      bool Dfs(const std::string &a, const std::string &target) {
        if (a.size() == target.size()) {
          return a == target;
        }
        if (Exist(a + 'A') && Dfs(a + 'A', target)) {
          return true;
        }
        std::string new_a = a + 'B';
        std::reverse(new_a.begin(), new_a.end());
        return Exist(new_a) && Dfs(new_a, target);
      }
    };

    code for problem2

    #include <algorithm>
    #include <vector>
    
    constexpr int kMAXN = 1002000;
    long long p[kMAXN];
    long long q[kMAXN];
    
    class ChangingChange {
     public:
      std::vector<int> countWays(std::vector<int> ways,
                                 std::vector<int> valueRemoved,
                                 std::vector<int> numRemoved) {
        constexpr int kMod = 1000000007;
        int n = ways.size() - 1;
        int m = valueRemoved.size();
        auto ModInv = [&](long long k) {
          int t = kMod - 2;
          long long r = 1;
          while (t > 0) {
            if (t % 2 == 1) {
              r = r * k % kMod;
            }
            t /= 2;
            k = k * k % kMod;
          }
          return r;
        };
        p[0] = 1;
        for (int i = 1; i < kMAXN; ++i) {
          p[i] = i * p[i - 1] % kMod;
        }
        q[kMAXN - 1] = ModInv(p[kMAXN - 1]);
        for (int i = kMAXN - 2; i >= 0; --i) {
          q[i] = q[i + 1] * (i + 1) % kMod;
        }
        std::vector<int> result(m);
        for (int id = 0; id < m; ++id) {
          int k = valueRemoved[id];
          int num = numRemoved[id];
          long long total = 0;
          for (int i = 0, t = n / k; i <= t; ++i) {
            long long a = p[num + i - 1] * q[i] % kMod * q[num - 1] % kMod *
                          ways[n - i * k] % kMod;
            if ((i & 1) == 0) {
              total += a;
            } else {
              total += kMod - a;
            }
            if (total >= kMod) {
              total -= kMod;
            }
          }
          result[id] = static_cast<int>(total);
        }
        return result;
      }
    };

    code for problem3

    #include <string>
    
    constexpr int kMod = 1000000007;
    constexpr int kMaxN = 1001;
    
    int a[kMaxN][kMaxN];
    int c[kMaxN][kMaxN];
    int f[kMaxN];
    
    class WarAndPeas {
     public:
      int expectedPeas(const std::string &state) {
        int n = static_cast<int>(state.size());
        c[0][0] = 1;
        for (int i = 1; i <= n; ++i) {
          c[i][0] = c[i][i] = 1;
          for (int j = 1; j < i; ++j) {
            c[i][j] = Add(c[i - 1][j - 1], c[i - 1][j]);
          }
        }
        int s = 0;
        for (int i = 1; i < n; ++i) {
          if (state[i] == state[0]) {
            ++s;
          }
        }
        for (int i = 0; i < n; ++i) {
          int p1 = Mul(Add(c[i + 1][2], c[n - i - 1][2]), Inverse(c[n][2]));
          int p2 = Mul(Mul(i, n - i - 1), Inverse(2 * c[n][2]));
          int p3 = Add(1, kMod - Add(p1, p2));
          if (i == n - 1) {
            p1 = 0;
          }
          p1 = Add(p1, kMod - 1);
          if (i == s) {
            a[i][n] = Mul(kMod - 1, Inverse(c[n - 1][s]));
          }
          a[i][i] = p1;
          if (i > 0) {
            a[i][i - 1] = p2;
          }
          if (i < n - 1) {
            a[i][i + 1] = p3;
          }
        }
        Solve(n);
        int result = 0;
        for (int i = 0; i < n; ++i) {
          result = Add(result, Mul(f[i], c[n - 1][i]));
        }
        result = Mul(result, Inverse(Pow(2, n)));
        return result;
      }
    
     private:
      void Solve(int n) {
        for (int i = 0; i < n; ++i) {
          for (int j = i; j < n; ++j) {
            if (a[j][i] != 0) {
              for (int k = 0; k <= n; ++k) {
                std::swap(a[i][k], a[j][k]);
              }
              break;
            }
          }
          for (int j = 0; j < n; ++j) {
            if (j == i || a[j][i] == 0) {
              continue;
            }
            int t = Mul(a[j][i], Inverse(a[i][i]));
            for (int k = 0; k <= n; ++k) {
              a[j][k] = Add(a[j][k], kMod - Mul(a[i][k], t));
            }
          }
        }
        for (int i = 0; i < n; ++i) {
          f[i] = Mul(a[i][n], Inverse(a[i][i]));
        }
      }
    
      int Pow(long long a, int b) {
        long long r = 1;
        while (b > 0) {
          if (b % 2 == 1) {
            r = r * a % kMod;
          }
          a = a * a % kMod;
          b /= 2;
        }
        return static_cast<int>(r);
      }
    
      int Inverse(int x) { return Pow(x, kMod - 2); }
    
      int Add(int x, int y) {
        x += y;
        if (x >= kMod) {
          x -= kMod;
        }
        return x;
      }
    
      int Mul(long long x, long long y) { return static_cast<int>(x * y % kMod); }
    };
  • 相关阅读:
    正则表达式(二)
    HTTP状态码
    ajax(局部刷新技术)
    day03<JS对象&函数>
    day02<CSS&JavaScript>
    day01<HTML等>
    总结:HTML表单的应用
    总结:HTML的框架结构
    九、浮动与定位
    八、CSS高级技巧
  • 原文地址:https://www.cnblogs.com/jianglangcaijin/p/6889705.html
Copyright © 2011-2022 走看看