zoukankan      html  css  js  c++  java
  • POJ 3264 Balanced Lineup

    Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 27620   Accepted: 12987
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q.
    Lines 2.. N+1: Line i+1 contains a single integer that is the height of cow i
    Lines N+2.. N+ Q+1: Two integers A and B (1 ≤ ABN), representing the range of cows from A to B inclusive.

    Output

    Lines 1.. Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    Source

    USACO 2007 January Silver
        RMQ算法模版题。注意运算符的优先级 1 + 1<<2 和1 + (1<<2)的结果是不一样的
    同样1<<2 + 1 和(1<<2)+1的结果也是不一样的
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #define N 51000
    using namespace std;
    int Max[N][20],Min[N][20],a[N],n,m;
    int main()
    {
        //freopen("data1.in","r",stdin);
        void RMQ_init();
        void RMQ(int l,int r,int &res1,int &res2);
        while(scanf("%d %d",&n,&m)!=EOF)
        {
            for(int i=1;i<=n;i++)
            {
                scanf("%d",&a[i]);
            }
            RMQ_init();
            for(int i=1;i<=m;i++)
            {
                int x,y;
                scanf("%d %d",&x,&y);
                int res1,res2;
                RMQ(x,y,res1,res2);
                printf("%d
    ",res2 - res1);
            }
        }
        return 0;
    }
    void RMQ_init()
    {
        for(int i=1;i<=n;i++)
        {
            Max[i][0] = a[i];
            Min[i][0] = a[i];
        }
        for(int j=1;(1<<j)<=n;j++)
        {
            for(int i=1;i +(1<<(j-1))<=n;i++)
            {
                Min[i][j] = min(Min[i][j-1],Min[i +(1<<(j-1))][j-1]);
                Max[i][j] = max(Max[i][j-1],Max[i +(1<<(j-1))][j-1]);
            }
        }
    }
    void RMQ(int l,int r,int &res1,int &res2)
    {
        int k = 0;
        while(1<<(k+1)<=(r - l + 1))
        {
            k++;
        }
        res1 = min(Min[l][k],Min[r -(1<<k)+1][k]);
        res2 = max(Max[l][k],Max[r -(1<<k)+1][k]);
    }
    


  • 相关阅读:
    (五)STL序列容器(deque)
    (四)STL序列容器(vector)
    (三)STL序列容器(array)
    (六)c语言之指针与函数、数组用法
    (五)c语言之内存分配
    (三)c++模板函数与函数模板详解
    Linux基础(03)gdb调试
    Linux基础(02)MakeFile的创建和使用
    Linux基础(01)开发环境的搭建
    Windows的socket编程
  • 原文地址:https://www.cnblogs.com/jiangu66/p/3155554.html
Copyright © 2011-2022 走看看