zoukankan      html  css  js  c++  java
  • CF 327E(Axis Walking-状态压缩Dp-lowbit的使用)

    E. Axis Walking
    time limit per test
    3 seconds
    memory limit per test
    512 megabytes
    input
    standard input
    output
    standard output

    Iahub wants to meet his girlfriend Iahubina. They both live in Ox axis (the horizontal axis). Iahub lives at point 0 and Iahubina at point d.

    Iahub has n positive integers a1a2, ..., an. The sum of those numbers is d. Suppose p1p2, ..., pn is a permutation of {1, 2, ..., n}. Then, let b1 = ap1b2 = ap2 and so on. The array b is called a "route". There are n! different routes, one for each permutation p.

    Iahub's travel schedule is: he walks b1 steps on Ox axis, then he makes a break in point b1. Then, he walks b2 more steps on Ox axis and makes a break in point b1 + b2. Similarly, at j-th (1 ≤ jn) time he walks bj more steps on Ox axis and makes a break in point b1 + b2 + ... + bj.

    Iahub is very superstitious and has k integers which give him bad luck. He calls a route "good" if he never makes a break in a point corresponding to one of those k numbers. For his own curiosity, answer how many good routes he can make, modulo 1000000007(109 + 7).

    Input

    The first line contains an integer n (1 ≤ n ≤ 24). The following line contains n integers: a1, a2, ..., an (1 ≤ ai ≤ 109).

    The third line contains integer k (0 ≤ k ≤ 2). The fourth line contains k positive integers, representing the numbers that give Iahub bad luck. Each of these numbers does not exceed 109.

    Output

    Output a single integer — the answer of Iahub's dilemma modulo 1000000007 (109 + 7).

    Sample test(s)
    input
    3
    2 3 5
    2
    5 7
    
    output
    1
    
    input
    3
    2 2 2
    2
    1 3
    
    output
    6
    
    Note

    In the first case consider six possible orderings:

     

    • [2, 3, 5]. Iahub will stop at position 2, 5 and 10. Among them, 5 is bad luck for him.
    • [2, 5, 3]. Iahub will stop at position 2, 7 and 10. Among them, 7 is bad luck for him.
    • [3, 2, 5]. He will stop at the unlucky 5.
    • [3, 5, 2]. This is a valid ordering.
    • [5, 2, 3]. He got unlucky twice (5 and 7).
    • [5, 3, 2]. Iahub would reject, as it sends him to position 5.

     

    In the second case, note that it is possible that two different ways have the identical set of stopping. In fact, all six possible ways have the same stops: [2, 4, 6], so there's no bad luck for Iahub.


    状态压缩DP

    考试时由于24*2^24 复杂度太高没写

    结果答案居然就是这样

    不过枚举时要直接用lowbit(i),返回min(2^k) (i)2  第k位为1

    大家直接看答案就行了

    忽然发现几乎没做过状压DP的题

    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #include<functional>
    #include<cmath>
    #include<cctype>
    #include<cassert>
    #include<climits>
    using namespace std;
    #define For(i,n) for(int i=1;i<=n;i++)
    #define Rep(i,n) for(int i=0;i<n;i++)
    #define Fork(i,k,n) for(int i=k;i<=n;i++)
    #define ForD(i,n) for(int i=n;i;i--)
    #define Forp(x) for(int p=pre[x];p;p=next[p])
    #define RepD(i,n) for(int i=n;i>=0;i--)
    #define MEM(a) memset(a,0,sizeof(a))
    #define MEMI(a) memset(a,127,sizeof(a))
    #define MEMi(a) memset(a,128,sizeof(a))
    #define INF (2139062143)
    #define F (1000000007)
    #define MAXN (1<<24)
    #define MAXItem (24+10)
    typedef long long ll;
    int n,k;
    ll f[MAXN]={0},g[MAXN]={0},A[MAXN]={0},a[MAXItem]={0},b[MAXItem]={0};
    int main()
    {
    // freopen("CF327E.in","r",stdin);
       scanf("%d",&n);
       For(i,n) scanf("%d",&a[i]),A[1<<i-1]=a[i];
       cin>>k;
       For(i,k) scanf("%d",&b[i]);Fork(i,k+1,2) b[i]=-1; //除了x=-1,x^-1!=0   
       Rep(i,1<<n) f[i]=f[i-(i&(-i))]+A[i&(-i)];
       g[0]=1;
       Rep(i,1<<n)
          if (f[i]^b[1]&&f[i]^b[2]&&f[i]^b[3])    
          {
             //for(int j=(1<<n)-1;j;j-=j&(-j)) f[i+(j&-j)
             for(int j=i;j;j-=j&(-j)) g[i]=g[i]+g[i-(j&(-j))];
             g[i]%=F;
          }
       
       printf("%I64d",g[(1<<n)-1]%F);
       
    // while(1);
       return 0;
    }
    




  • 相关阅读:
    HttpServletResponse
    非易失性FRAM中的预充电操作
    Everspin MRAM优化系统能耗
    工业和消费者HMI系统中的扩展内存
    STT结构涡轮增压MRAM
    将FRAM存储器芯片集成到汽车EDR设计中
    ros编译时报Invoking "make -j4 -l4" failed
    python安装第三方库xlrd失败、更新pip失败
    python的pip命令安装request库失败、在pycharm里File>setting...>Python Interpreter里右上角点击加号搜索request点击安装也失败
    selenium之unitest库
  • 原文地址:https://www.cnblogs.com/jiangu66/p/3174464.html
Copyright © 2011-2022 走看看