zoukankan      html  css  js  c++  java
  • 【deep learning学习笔记】最近读的几个ppt(四)

    这几个ppt都是在微博上看到的,是百度的一个员工整理的。


    《Deep Belief Nets》,31页的一个ppt

    1. 相关背景

        还是在说deep learning好啦,如特征表示云云。列了一些参考文献,关于deep learning训练的,还不错。

    2. 基本概念

        两种产生式神经网络:(1)sigmod belief network;(2)Boltzmann Machine

        多个概率密度模型如何融合?

    (1)mixture:就是加权平均

    (2)product:乘积

    (3)composition:将一层的输入作为下一层的输出,layerwise的训练。这是软件工程中设计模式的概念,不知道是不是有义套用到这里的。

       介绍了下DBN的结构和训练

    3. 训练过程

       pre-training, fine-tuning, bp

       rbm 的 layerwise训练

    4. 背后的故事

        sigmod DBN 等价于RBM,原话是“An infinite sigmoid belief net that is equivalent to an RBM”。不过RBM学习过程更加简单。

        为什么layerwise的训练work?公式推导一大堆,总之,提升了Log-likelihood目标函数的下界。



    《Restricted Boltzmann Machine(RBM) 受限波尔兹曼机》,作者写了27页。

    1. 背景介绍

    (1)随机神经网络:

    确定性神经网络:即通常意义的神经网络+bp算法

    随机神经网路:按照某种分布修改神经网络的权值,与模拟退火算法相结合,摆脱局部最优。


    模拟退火算法应用于BP算法
    1. 初始化温度T(0),t0,随机初始化权值w
    0;
    2. 应用BP算法搜索局部最优解w(t),计算最优解目标函数值E(t);
    3. 随机修正权值w’(t) = w(t) + △w,计算修正后的目标函数值
    E’(t);
    4. 若E’(t)< E(t),则确认修改,w(t)=w’(t),E(t)=E’(t);
    5. 否则依据概率P = exp(-{E’(t) - E(t)}/T(t))确认修改;
    6. 温度下降:t=t+1,T(t) = T(0)/[1+ln(t+100)],如4,5步确认修改,
    转移到2,否则转移到3,直到温度下降到一定阈值为止


    (2)波尔兹曼器简介

    两点:1. 是随机神经网络;2. 只有两个层,隐含层和显示层,组成一个全连通图(节点之间两两互联)

    定义能量函数、概率密度、分布估计


    2. 受限波尔兹曼机(Restricted Boltzmann Machine,RBM)

    拓扑结构的变化:隐含层和显示层层内的节点相互没有联系

    参数:显层节点权重b,隐层节点权重c,两层连接权重矩阵W

    定义能量函数、概率密度、分布估计等

    条件独立性:给定一层(无论是隐含层还是显示层),另一层的节点条件概率相互独立。

    RBM的求解:似然函数、随机梯度下降,关键是梯度如何计算。这里有一大坨公式。

    如果精确计算的话,归一化因子的计算量太大。考虑用Gibbs抽样。还可以用Contrastive Divergency。

    ppt接下来介绍Markov Chain,且RBM的训练满足Markov Chain的“平稳性”。没细看,我理解为layerwise training的合理性说明。

    RBM求解总结:1. 计算梯度;2. 算法随机性表现在抽样随机。


    《Contrastive divergence for boltzmann machines》,13页,作者没写完。

    总体思路:BM->Gibbs sampling -> CD

    tmd全都是公式,没啥可写的。


  • 相关阅读:
    Java [leetcode 33]Search in Rotated Sorted Array
    JAVA方法和本地方法(转载)
    Java集合框架
    常用排序算法
    Java [leetcode 32]Longest Valid Parentheses
    四大组件的生命周期
    Android Service即四大组件总结
    Java [leetcode 31]Next Permutation
    android 组件设置屏幕大小
    MenuInflater用法
  • 原文地址:https://www.cnblogs.com/jiangu66/p/3177852.html
Copyright © 2011-2022 走看看