zoukankan      html  css  js  c++  java
  • HDU--1213--How Many Tables--并查集

    How Many Tables

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 9066    Accepted Submission(s): 4429


    Problem Description
    Today is Ignatius' birthday. He invites a lot of friends. Now it's dinner time. Ignatius wants to know how many tables he needs at least. You have to notice that not all the friends know each other, and all the friends do not want to stay with strangers.

    One important rule for this problem is that if I tell you A knows B, and B knows C, that means A, B, C know each other, so they can stay in one table.

    For example: If I tell you A knows B, B knows C, and D knows E, so A, B, C can stay in one table, and D, E have to stay in the other one. So Ignatius needs 2 tables at least.
     


     

    Input
    The input starts with an integer T(1<=T<=25) which indicate the number of test cases. Then T test cases follow. Each test case starts with two integers N and M(1<=N,M<=1000). N indicates the number of friends, the friends are marked from 1 to N. Then M lines follow. Each line consists of two integers A and B(A!=B), that means friend A and friend B know each other. There will be a blank line between two cases.
     


     

    Output
    For each test case, just output how many tables Ignatius needs at least. Do NOT print any blanks.
     


     

    Sample Input
    2 5 3 1 2 2 3 4 5 5 1 2 5
     


     

    Sample Output
    2 4

    #include <iostream>
    using namespace std;
    int father[1111];
    int Find(int a)  //找到祖先并所有家族成员指向祖先
    {
     return father[a]==a?a:father[a]=Find(father[a]);
    }
    void Union(int a,int b)  //把a家族并入b家族,a祖先指向b祖先
    {
     if(father[a]!=father[b])
     father[Find(a)]=Find(b);
    }
    int main (void)
    {
     int t,n,m,i,j,k,l;
     cin>>t;
     while(t--&&cin>>n>>m)
     {
      for(i=1;i<=n;i++)
       father[i]=i;
      for(i=0;i<m;i++)
      {
       cin>>k>>l;
       Union(k,l);
      }
      for(i=1,j=0;i<=n;i++)
      if(father[i]==i)  //计算有多少独立个体即计算多少家族即计算祖先数
      {
       j++;
      }
      cout<<j<<endl;
     }
     return 0;
    }

  • 相关阅读:
    session
    CSS3盒子模型
    由“从按下回车到网页显示”粗谈网页优化
    springMVC之拦截器
    设置Webdriver启动chrome为默认用户的配置信息
    [Swift]LeetCode498. 对角线遍历 | Diagonal Traverse
    [Swift]LeetCode497. 非重叠矩形中的随机点 | Random Point in Non-overlapping Rectangles
    [Swift]通天遁地Swift
    [Swift]LeetCode996. 正方形数组的数目 | Number of Squareful Arrays
    [Swift]LeetCode995. K 连续位的最小翻转次数 | Minimum Number of K Consecutive Bit Flips
  • 原文地址:https://www.cnblogs.com/jiangu66/p/3198782.html
Copyright © 2011-2022 走看看